meta data for this page
  •  

문서의 이전 판입니다!


이원배치법 (혼합모형) (반복있음)

데이터 구조

인자 $A$ 는 모수인자

인자 $B$ 는 변량인자

$$y_{ijk} = \mu + a_{i} + b_{j} + (ab)_{ij} + e_{ijk}$$

  • $y_{ijk}$ : $A_{i}$와 $B_{j}$에서 얻은 $k$ 번째 측정값
  • $\mu$ : 실험전체의 모평균
  • $a_{i}$ : $A_{i}$가 주는 효과
  • $b_{j}$ : $B_{j}$가 주는 효과 ( $b_{j} \sim N(0, \sigma_{B}^{ \ 2})$ 이고 서로 독립)
  • $(ab)_{ij}$ : $A_{i}$와 $B_{j}$의 교호작용 효과 $\left( \sum_{i=1}^{l}(ab)_{ij}=0 \ , \ \sum_{j=1}^{m}(ab)_{ij} \neq 0 \right)$
  • $e_{ijk}$ : $A_{i}$와 $B_{j}$에서 얻은 $k$번째 측정값오차 ( $e_{ijk} \sim N(0, \sigma_{E}^{ \ 2})$ 이고 서로 독립)
  • $i$ : 인자 $A$의 수준 수 $( i = 1,2, \cdots ,l )$
  • $j$ : 인자 $B$의 수준 수 $( j = 1,2, \cdots ,m )$
  • $k$ : 실험의 반복 수 $( j = 1,2, \cdots ,r )$

자료의 구조

||<|2> [인자] $$B$$ |||||||||||||| [인자] $$A$$ ||<|2> 합계 ||<|2> [평균] || |||| $$A_{1}$$ |||| $$A_{2}$$ || $$\cdots$$ |||| $$A_{l}$$ || |||||||||||||||||||| || ||<|4> $$B_{1}$$ || $$y_{111}$$ ||<|2> $$T_{11.}$$ || $$y_{211}$$ ||<|2> $$T_{21.}$$ ||<|4> $$\cdots$$ || $$y_{l11}$$ ||<|2> $$T_{l1.}$$ ||<|4> $$T_{.1.}$$ ||<|4> $$\overline{y}_{.1.}$$ || || $$y_{112}$$ || $$y_{212}$$ || $$y_{l12}$$ || || $$\vdots$$ ||<|2> $$\overline{y}_{11.}$$ || $$\vdots$$ ||<|2> $$\overline{y}_{21.}$$ || $$\vdots$$ ||<|2> $$\overline{y}_{l1.}$$ || || $$y_{11r}$$ || $$y_{21r}$$ || $$y_{l1r}$$ || ||<|4> $$B_{2}$$ || $$y_{121}$$ ||<|2> $$T_{12.}$$ || $$y_{221}$$ ||<|2> $$T_{22.}$$ ||<|4> $$\cdots$$ || $$y_{l21}$$ ||<|2> $$T_{l2.}$$ ||<|4> $$T_{.2.}$$ ||<|4> $$\overline{y}_{.2.}$$ || || $$y_{122}$$ || $$y_{222}$$ || $$y_{l22}$$ || || $$\vdots$$ ||<|2> $$\overline{y}_{12.}$$ || $$\vdots$$ ||<|2> $$\overline{y}_{22.}$$ || $$\vdots$$ ||<|2> $$\overline{y}_{l2.}$$ || || $$y_{12r}$$ || $$y_{22r}$$ || $$y_{l2r}$$ || || $$\vdots$$ |||| $$\vdots$$ |||| $$\vdots$$ || $$\vdots$$ |||| $$\vdots$$ || $$\vdots$$ || $$\vdots$$ || ||<|4> $$B_{m}$$ || $$y_{1m1}$$ ||<|2> $$T_{1m.}$$ || $$y_{2m1}$$ ||<|2> $$T_{2m.}$$ ||<|4> $$\cdots$$ || $$y_{lm1}$$ ||<|2> $$T_{lm.}$$ ||<|4> $$T_{.m.}$$ ||<|4> $$\overline{y}_{.m.}$$ || || $$y_{1m2}$$ || $$y_{2m2}$$ || $$y_{lm2}$$ || || $$\vdots$$ ||<|2> $$\overline{y}_{1m.}$$ || $$\vdots$$ ||<|2> $$\overline{y}_{2m.}$$ || $$\vdots$$ ||<|2> $$\overline{y}_{lm.}$$ || || $$y_{1mr}$$ || $$y_{2mr}$$ || $$y_{lmr}$$ || |||||||||||||||||||| || || 합계 |||| $$T_{1..}$$ |||| $$T_{2..}$$ || $$\cdots$$ |||| $$T_{l..}$$ || $$T$$ || || || [평균] |||| $$\overline{y}_{1..}$$ |||| $$\overline{y}_{2..}$$ || $$\cdots$$ |||| $$\overline{y}_{l..}$$ || || $$\overline{\overline{y}}$$ ||

|| $$T_{i..} = \sum_{j=1}^{m} \sum_{k=1}^{r} y_{ijk}$$ || $$\overline{y}_{i..} = \frac{T_{i..}}{mr}$$ ||
|| $$T_{.j.} = \sum_{i=1}^{l} \sum_{k=1}^{r} y_{ijk}$$ || $$\overline{y}_{.j.} = \frac{T_{.j.}}{lr}$$ ||
|| $$T_{ij.} = \sum_{k=1}^{r} y_{ijk}$$ || $$\overline{y}_{ij.} = \frac{T_{ij.}}{r}$$ ||
|| $$T = \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{r} y_{ijk}$$ || $$\overline{\overline{y}} = \frac{T}{lmr} = \frac{T}{N}$$ ||
|| $$N = lmr$$ || $$CT = \frac{T^{2}}{lmr} = \frac{T^{2}}{N}$$ ||

—-

[제곱합]

개개의 데이터 $$y_{ijk}$$ 와 총편균 $$\overline{\overline{y}}$$ 의 차이는 다음과 같이 네 부분으로 나뉘어진다.

$$(y_{ijk}-\overline{\overline{y}})=(y_{i..}-\overline{\overline{y}})+(y_{.j.}-\overline{\overline{y}})+(\overline{y}_{ij.}-\overline{y}_{i..}-\overline{y}_{.j.}+\overline{\overline{y}})+(y_{ijk}-\overline{y}_{ij.})$$

양변을 제곱한 후에 모든 $$i, \ j, \ k$$ 에 대하여 합하면 아래의 등식을 얻을 수 있다.

$$\begin{displaymath}\begin{split} \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{r}(y_{ijk}-\overline{\overline{y}})^{2} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{r}(y_{i..}-\overline{\overline{y}})^{2}+\sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{r}(y_{.j.}-\overline{\overline{y}})^{2}+\sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{r}(\overline{y}_{ij.}-\overline{y}_{i..}-\overline{y}_{.j.}+\overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{r}(y_{ijk}-\overline{y}_{ij.})^{2} \end{split}\end{displaymath}$$

위 식에서 왼쪽 항은 총변동 $$S_{T}$$ 이고, 오른쪽 항은 차례대로 $$A$$ 의 [변동], $$B$$ 의 [변동], $$A, \ B$$ 의 [교호작용]의 변동 [오차변동]인 $$S_{A}$$ , $$S_{B}$$ , $$S_{A \times B}$$ , $$S_{E}$$ 가 된다.

$$\begin{displaymath}\begin{split} S_{T} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{r}(y_{ijk}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{r}y_{ijk}^{ \ 2} - CT \end{split}\end{displaymath}$$
$$\begin{displaymath}\begin{split} S_{A} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{r}(y_{i..}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\frac{T_{i..}^{ \ 2}}{mr}-CT \end{split}\end{displaymath}$$
$$\begin{displaymath}\begin{split} S_{B} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{r}(y_{.j.}-\overline{\overline{y}})^{2} \\ &= \sum_{j=1}^{m}\frac{T_{.j.}^{ \ 2}}{lr}-CT \end{split}\end{displaymath}$$
$$\begin{displaymath}\begin{split} S_{A \times B} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{r}(\overline{y}_{ij.}-\overline{y}_{i..}-\overline{y}_{.j.}+\overline{\overline{y}})^{2} \\ &= S_{AB} - S_{A} - S_{B} \end{split}\end{displaymath}$$
$$\begin{displaymath}\begin{split} S_{AB} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{r}(\overline{y}_{ij.}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m} \frac{T_{ij.}^{ \ 2}}{r} -CT \end{split}\end{displaymath}$$
$$\begin{displaymath}\begin{split} S_{E} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{r}(y_{ijk}-\overline{y}_{ij.})^{2} \\ &= S_{T}-S_{AB} \end{split}\end{displaymath}$$

—-

자유도

$$\nu_{_{A}} = l-1$$

$$\nu_{_{B}} = m-1$$

$$\nu_{_{A \times B}} = \nu_{_{AB}} - \nu_{_{A}} - \nu_{_{B}} = (l-1)(m-1)$$

$$\nu_{_{AB}} = lm-1$$

$$\nu_{_{E}} = \nu_{_{T}} - \nu_{_{AB}}=lm(r-1)$$

$$\nu_{_{T}} = lmr-1=N-1$$

평균제곱

$$V_{A} = \frac{S_{A}}{\nu_{_{A}}}$$

$$V_{B} = \frac{S_{B}}{\nu_{_{B}}}$$

$$V_{A \times B} = \frac{S_{A \times B}}{\nu_{_{A \times B}}}$$

$$V_{AB} = \frac{S_{AB}}{\nu_{_{AB}}}$$

$$V_{E} = \frac{S_{E}}{\nu_{_{E}}}$$

분산분석표

요인 제곱합
$SS$
자유도
$DF$
평균제곱
$MS$
$E(MS)$ $F_{0}$ 기각치 순변동
$S\acute{}$
기여율
$\rho$
$$A$$ $$S_{_{A}}$$ $$\nu_{_{A}} = l - 1$$ $$V_{_{A}} = S_{_{A}} / \nu_{_{A}}$$ $$\sigma_{_{E}}^{ \ 2} + r \sigma_{_{A \times B}}^{ \ 2} + m r \ \sigma_{_{A}}^{ \ 2}$$ $$V_{_{A}}/V_{_{A \times B}}$$ $$F_{1-\alpha}(\nu_{_{A}} \ , \ \nu_{_{A \times B}})$$ $$S_{_{A}}\acute{}$$ $$S_{_{A}}\acute{} / S_{_{T}} $$
$$B$$ $$S_{_{B}}$$ $$\nu_{_{B}} = m - 1$$ $$V_{_{B}} = S_{_{B}} / \nu_{_{B}}$$ $$\sigma_{_{E}}^{ \ 2} + l r\ \sigma_{_{B}}^{ \ 2}$$ $$V_{_{B}}/V_{_{E}}$$ $$F_{1-\alpha}(\nu_{_{B}} \ , \ \nu_{_{E}})$$ $$S_{_{B}}\acute{}$$ $$S_{_{B}}\acute{} / S_{_{T}} $$
$$A \times B$$ $$S_{_{A \times B}}$$ $$\nu_{_{A \times B}} = (l - 1)(m - 1)$$ $$V_{_{A \times B}} = S_{_{A \times B}} / \nu_{_{A \times B}}$$ $$\sigma_{_{E}}^{ \ 2} + r \ \sigma_{_{A \times B}}^{ \ 2}$$ $$V_{_{A \times B}}/V_{_{E}}$$ $$F_{1-\alpha}(\nu_{_{A \times B}} \ , \ \nu_{_{E}})$$ $$S_{_{A \times B}}\acute{}$$ $$S_{_{A \times B}}\acute{} / S_{_{T}} $$
$$E$$ $$S_{_{E}}$$ $$\nu_{_{E}} = lm(r - 1)$$ $$V_{_{E}} = S_{_{E}} / \nu_{_{E}}$$ $$\sigma_{_{E}}^{ \ 2}$$ $$S_{_{E}}\acute{} = S_{_{T}} - S_{_{A}}\acute{} - S_{_{B}}\acute{} - S_{_{A \times B}}\acute{}$$ $$S_{_{E}}\acute{} / S_{_{T}} $$
$$T$$ $$S_{_{T}}$$ $$\nu_{_{T}} = lmr - 1$$ $$S_{_{T}}$$ $$1$$