meta data for this page
  •  

차이

문서의 선택한 두 판 사이의 차이를 보여줍니다.

차이 보기로 링크

다음 판
이전 판
삼원배치법_모수모형_반복있음 [2012/07/26 22:56]
moonrepeat 새로 만듦
삼원배치법_모수모형_반복있음 [2021/03/10 21:42] (현재)
줄 1: 줄 1:
 ====== 삼원배치법 (모수모형) (반복있음) ====== ====== 삼원배치법 (모수모형) (반복있음) ======
 ===== 데이터 구조 ===== ===== 데이터 구조 =====
- ​[요인]&​nbsp&​nbsp $$A$$ 는 [모수인자]+ [[요인]$A$는 ​[[모수인자]]
  
- ​[요인]&​nbsp&​nbsp $$B$$ 는 [모수인자]+ [[요인]$B$는 ​[[모수인자]]
  
- ​[요인]&​nbsp&​nbsp $$C$$ 는 [모수인자]+ [[요인]$C$는 ​[[모수인자]]
  
 + $$ y_{ijkp} = \mu + a_{i} + b_{j} + c_{k} + (ab)_{ij} + (ac)_{ik} + (bc)_{jk} + (abc)_{ijk} + e_{ijkp} $$
  
-  ​$$ y_{ijkp} ​= \mu + a_{i} + b_{j} + c_{k} + (ab)_{ij} + (ac)_{ik} + (bc)_{jk} + (abc)_{ijk} + e_{ijkp} ​$$+  ​$y_{ijkp}$  :  $A_{i}$ 와 $B_{j}$ 그리고 $C_{k}$ 에서 얻은 $p번째 [[측정값]]
  
 +  * $\mu$  : 실험전체의 [[모평균]]
 +  * $a_{i}$ : $A_{i}$가 주는 효과
 +  * $b_{j}$ : $B_{j}$가 주는 효과
 +  * $c_{k}$ : $C_{k}$가 주는 효과
 +  * $(ab)_{ij}$ : $A_{i}$와 $B_{j}$의 [[교호작용]] 효과
 +  * $(ac)_{ik}$ : $A_{i}$와 $C_{k}$의 [[교호작용]] 효과
 +  * $(bc)_{jk}$ : $B_{j}$와 $C_{k}$의 [[교호작용]] 효과
 +  * $(abc)_{ijk}$ : $A_{i}$와 $B_{J}$ 그리고 $C_{k}$의 [[교호작용]] 효과
 +  * $e_{ijkp}$ : $A_{i}$와 $B_{j}$ 그리고 $C_{k}$에서 얻은 $p$번째 [[측정값]]의 [[오차]] ($e_{ijkp} \sim N(0, \sigma_{E}^{ \ 2})$이고 서로 [[독립]])
  
-   ​$$y_{ijkp}$$ &​nbsp&​nbsp : &​nbsp&​nbsp $$A_{i}$$ 와&​nbsp&​nbsp $$B_{j}$$ &​nbsp&​nbsp그리고&​nbsp&​nbsp $$C_{k}$$ 에서 얻은&​nbsp&​nbsp $$p$$ 번째 [측정값] +  ​$i$ : [[인자]] $A$의 [[수준]] 수 $( i = 1,2, \cdots ,l )$ 
- +  ​* ​$j$ : [[인자]] $B$의 ​[[수준]] 수 $( j = 1,2, \cdots ,m )$ 
-   $$\mu$$ &​nbsp&​nbsp : 실험전체의 [모평균] +  ​* ​$k$ : [[인자]] $C$의 ​[[수준]] 수 $( k = 1,2, \cdots ,n )$ 
- +  ​* ​$p$ : 실험의 ​[[반복]] 수 $( p = 1,2, \cdots ,r )$
-   $$a_{i}$$ &​nbsp&​nbsp ​&​nbsp&​nbsp $$A_{i}$$ 가 주는 효과 +
- +
-   ​$$b_{j}$$ &​nbsp&​nbsp : &​nbsp&​nbsp $$B_{j}$$ 가 주는 효과 +
- +
-   ​$$c_{k}$$ &​nbsp&​nbsp : &​nbsp&​nbsp $$C_{k}$$ 가 주는 효과 +
- +
-   ​$$(ab)_{ij}$$ &​nbsp&​nbsp : &​nbsp&​nbsp $$A_{i}$$ 와&​nbsp&​nbsp $$B_{j}$$ 의 [교호작용] 효과 +
- +
-   ​$$(ac)_{ik}$$ &​nbsp&​nbsp : &​nbsp&​nbsp $$A_{i}$$ 와&​nbsp&​nbsp $$C_{k}$$ 의 [교호작용효과 +
- +
-   ​$$(bc)_{jk}$$ &​nbsp&​nbsp : &​nbsp&​nbsp $$B_{j}$$ 와&​nbsp&​nbsp $$C_{k}$$ 의 [교호작용효과 +
- +
-   ​$$(abc)_{ijk}$$ &​nbsp&​nbsp : &​nbsp&​nbsp $$A_{i}$$ 와&​nbsp&​nbsp $$B_{J}$$ &​nbsp&​nbsp그리고&​nbsp&​nbsp $$C_{k}$$ 의 [교호작용] 효과 +
- +
-   ​$$e_{ijkp}$$ &​nbsp&​nbsp : &​nbsp&​nbsp $$A_{i}$$ 와&​nbsp&​nbsp $$B_{j}$$ &​nbsp&​nbsp그리고&​nbsp&​nbsp $$C_{k}$$ 에서 얻은&​nbsp&​nbsp $$p$$ 번째 [측정값]의 [오차] ​ ( $$e_{ijkp} \sim N(0, \sigma_{E}^{ \ 2})$$ 이고 서로 [독립]) +
- +
- +
-    $$i$$ &​nbsp&​nbsp : 인자&​nbsp&​nbsp $$A$$ 의 [수준] 수&​nbsp&​nbsp $$( i = 1,2, \cdots ,l )$+
- +
-    $$j$$ &​nbsp&​nbsp ​: 인자&​nbsp&​nbsp $$B$$ 의 [수준] 수&​nbsp&​nbsp $$( j = 1,2, \cdots ,m )$+
- +
-    $$k$$ &​nbsp&​nbsp ​: 인자&​nbsp&​nbsp $$C$$ 의 [수준] 수&​nbsp&​nbsp $$( k = 1,2, \cdots ,n )$+
- +
-    $$p$$ &​nbsp&​nbsp ​: 실험의 [반복] 수&​nbsp&​nbsp $$( p = 1,2, \cdots ,r )$+
-----+
 ===== 자료의 구조 ===== ===== 자료의 구조 =====
- ||<​|2> ​[인자] ​$$B$$ ||<​|2> ​[인자] ​$$C$$ |||||||| ​[인자] ​$$A$|| + [[인자]]\\ $B$  ​^ ​ [[인자]]\\ $C$  ​^ ​ [[인자]$A$  ||||  
- || $$A_{1}$$ ​|| $$A_{2}$$ ​|| $$\cdots$$ ​|| $$A_{l}$$ ​|+^:::​^:::​^  ​$$A_{1}$$ ​ ​^  ​$$A_{2}$$ ​ ​^  ​$$\cdots$$ ​ ​^  ​$$A_{l}$$ ​ 
- |||||||||||| || +^  ​$$B_{1}$$ ​ ​^  ​$$C_{1}$$ ​  $$y_{1111}$$ ​  $$y_{2111}$$ ​  $$\cdots$$ ​  $$y_{l111}$$ ​ |  
- ​||<​|10> ​$$B_{1}$$ ​||<​|3> ​$$C_{1}$$ |$$y_{1111}$$ |$$y_{2111}$$ |$$\cdots$$ |$$y_{l111}$$ ​|+^:::^::: $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​ 
- |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ ​|+^:::^::: $$y_{111r}$$ ​  $$y_{211r}$$ ​  $$\cdots$$ ​  $$y_{l11r}$$ ​ |  
- |$$y_{111r}$$ |$$y_{211r}$$ |$$\cdots$$ |$$y_{l11r}$$ ​|+^:::​^  ​$$C_{2}$$ ​  $$y_{1121}$$ ​  $$y_{2121}$$ ​  $$\cdots$$ ​  $$y_{l121}$$ ​ |  
- ||<​|3> ​$$C_{2}$$ |$$y_{1121}$$ |$$y_{2121}$$ |$$\cdots$$ |$$y_{l121}$$ ​|+^:::^::: $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​ |  
- |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ ​|+^:::^::: $$y_{112r}$$ ​  $$y_{212r}$$ ​  $$\cdots$$ ​  $$y_{l12r}$$ ​ |  
- |$$y_{112r}$$ |$$y_{212r}$$ |$$\cdots$$ |$$y_{l12r}$$ ​|+^:::​^  ​$$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​   ​ $$\vdots$$ ​ |  
- || $$\vdots$$ |$$\vdots$$ |$$\vdots$$ || || $$\vdots$$ ​|+^:::​^  ​$$C_{n}$$ ​  $$y_{11n1}$$ ​  $$y_{21n1}$$ ​  $$\cdots$$ ​  $$y_{l1n1}$$ ​ |  
- ||<​|3> ​$$C_{n}$$ |$$y_{11n1}$$ |$$y_{21n1}$$ |$$\cdots$$ |$$y_{l1n1}$$ ​|+^:::^::: $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​ |  
- |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ ​|+^:::^::: $$y_{11nr}$$ ​  $$y_{21nr}$$ ​  $$\cdots$$ ​  $$y_{l1nr}$$ ​ |  
- |$$y_{11nr}$$ |$$y_{21nr}$$ |$$\cdots$$ |$$y_{l1nr}$$ ​|+^  ​$$B_{2}$$ ​ ​^  ​$$C_{1}$$ ​  $$y_{1211}$$ ​  $$y_{2211}$$ ​  $$\cdots$$ ​  $$y_{l211}$$ ​ |  
- ||<​|10> ​$$B_{2}$$ ​||<​|3> ​$$C_{1}$$ |$$y_{1211}$$ |$$y_{2211}$$ |$$\cdots$$ |$$y_{l211}$$ ​|+^:::^::: $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​ |  
- |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ ​|+^:::^::: $$y_{121r}$$ ​  $$y_{221r}$$ ​  $$\cdots$$ ​  $$y_{l21r}$$ ​ |  
- |$$y_{121r}$$ |$$y_{221r}$$ |$$\cdots$$ |$$y_{l21r}$$ ​|+^:::​^  ​$$C_{2}$$ ​  $$y_{1221}$$ ​  $$y_{2221}$$ ​  $$\cdots$$ ​  $$y_{l221}$$ ​ |  
- ||<​|3> ​$$C_{2}$$ |$$y_{1221}$$ |$$y_{2221}$$ |$$\cdots$$ |$$y_{l221}$$ ​|+^:::^::: $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​ |  
- |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ ​|+^:::^::: $$y_{122r}$$ ​  $$y_{222r}$$ ​  $$\cdots$$ ​  $$y_{l22r}$$ ​ |  
- |$$y_{122r}$$ |$$y_{222r}$$ |$$\cdots$$ |$$y_{l22r}$$ ​|+^:::​^  ​$$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​   ​ $$\vdots$$ ​ |  
- || $$\vdots$$ |$$\vdots$$ |$$\vdots$$ || || $$\vdots$$ ​|+^:::​^  ​$$C_{n}$$ ​  $$y_{12n1}$$ ​  $$y_{22n1}$$ ​  $$\cdots$$ ​  $$y_{l2n1}$$ ​ |  
- ||<​|3> ​$$C_{n}$$ |$$y_{12n1}$$ |$$y_{22n1}$$ |$$\cdots$$ |$$y_{l2n1}$$ ​|+^:::^::: $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​ |  
- |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ ​|+^:::^::: $$y_{12nr}$$ ​  $$y_{22nr}$$ ​  $$\cdots$$ ​  $$y_{l2nr}$$ ​ |  
- |$$y_{12nr}$$ |$$y_{22nr}$$ |$$\cdots$$ |$$y_{l2nr}$$ ​|+^  ​$$\vdots$$ ​ ||  $$\vdots$$ ​ |||| 
- |||| $$\vdots$$ |||||||| ​$$\vdots$$ || +^  ​$$B_{m}$$ ​ ​^  ​$$C_{1}$$ ​  $$y_{1m11}$$ ​  $$y_{2m11}$$ ​  $$\cdots$$ ​  $$y_{lm11}$$ ​ |  
- ||<​|10> ​$$B_{m}$$ ​||<​|3> ​$$C_{1}$$ |$$y_{1m11}$$ |$$y_{2m11}$$ |$$\cdots$$ |$$y_{lm11}$$ ​|+^:::^::: $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​ |  
- |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ ​|+^:::^::: $$y_{1m1r}$$ ​  $$y_{2m1r}$$ ​  $$\cdots$$ ​  $$y_{lm1r}$$ ​ |  
- |$$y_{1m1r}$$ |$$y_{2m1r}$$ |$$\cdots$$ |$$y_{lm1r}$$ ​|+^:::​^  ​$$C_{2}$$ ​  $$y_{1m21}$$ ​  $$y_{2m21}$$ ​  $$\cdots$$ ​  $$y_{lm21}$$ ​ |  
- ||<​|3> ​$$C_{2}$$ |$$y_{1m21}$$ |$$y_{2m21}$$ |$$\cdots$$ |$$y_{lm21}$$ ​|+^:::^::: $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​ |  
- |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ ​|+^:::^::: $$y_{1m2r}$$ ​  $$y_{2m2r}$$ ​  $$\cdots$$ ​  $$y_{lm2r}$$ ​ |  
- |$$y_{1m2r}$$ |$$y_{2m2r}$$ |$$\cdots$$ |$$y_{lm2r}$$ ​|+^:::​^  ​$$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​   ​ $$\vdots$$ ​ |  
- || $$\vdots$$ |$$\vdots$$ |$$\vdots$$ || || $$\vdots$$ ​|+^:::​^  ​$$C_{n}$$ ​  $$y_{1mn1}$$ ​  $$y_{2mn1}$$ ​  $$\cdots$$ ​  $$y_{lmn1}$$ ​ |  
- ||<​|3> ​$$C_{n}$$ |$$y_{1mn1}$$ |$$y_{2mn1}$$ |$$\cdots$$ |$$y_{lmn1}$$ ​|+^:::^::: $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​ |  
- |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ ​|+^:::^::: $$y_{1mnr}$$ ​  $$y_{2mnr}$$ ​  $$\cdots$$ ​  $$y_{lmnr}$$ ​ 
- |$$y_{1mnr}$$ |$$y_{2mnr}$$ |$$\cdots$$ |$$y_{lmnr}$$ ​||+
  
-  $$AB$$ 2원표 + $AB$ 2원표 
-  ​||<​|2> ​[인자] ​$$B$$ |||||||| ​[인자] ​$$A$$ ||<​|2> ​합계 ​|+ [[인자]$B$  ​^ ​ [[인자]$A$  ​^^^^  ​합계 ​ |  
-  ​|| $$A_{1}$$ ​|| $$A_{2}$$ ​|| $$\cdots$$ ​|| $$A_{l}$$ ​|| +^:::^  ​$$A_{1}$$ ​ ​^  ​$$A_{2}$$ ​ ​^  ​$$\cdots$$ ​ ​^  ​$$A_{l}$$  ​^:::
-  |||||||||||| |+ ​$$B_{1}$$ ​  $$T_{11..}$$ ​  $$T_{21..}$$ ​  $$\cdots$$ ​  $$T_{l1..}$$ ​  $$T_{.1..}$$ ​ |  
-  ​|| $$B_{1}$$ |$$T_{11..}$$ |$$T_{21..}$$ |$$\cdots$$ |$$T_{l1..}$$ |$$T_{.1..}$$ ​|+ ​$$B_{2}$$ ​  $$T_{12..}$$ ​  $$T_{22..}$$ ​  $$\cdots$$ ​  $$T_{l2..}$$ ​  $$T_{.2..}$$ ​ |  
-  ​|| $$B_{2}$$ |$$T_{12..}$$ |$$T_{22..}$$ |$$\cdots$$ |$$T_{l2..}$$ |$$T_{.2..}$$ ​|+ ​$$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​   ​ $$\vdots$$ ​  $$\vdots$$ ​ |  
-  ​|| $$\vdots$$ |$$\vdots$$ |$$\vdots$$ || || $$\vdots$$ |$$\vdots$$ ​|+ ​$$B_{m}$$ ​  $$T_{1m..}$$ ​  $$T_{2m..}$$ ​  $$\cdots$$ ​  $$T_{lm..}$$ ​  $$T_{.m..}$$ ​ |  
-  ​|| $$B_{m}$$ |$$T_{1m..}$$ |$$T_{2m..}$$ |$$\cdots$$ |$$T_{lm..}$$ |$$T_{.m..}$$ ​|| + ​합계 ​ ​^  ​$$T_{1...}$$ ​ ​^  ​$$T_{2...}$$ ​ ​^  ​$$\cdots$$ ​ ​^  ​$$T_{l...}$$ ​ ​^  ​$$T$$  
-  |||||||||||| |+
-  ​|| 합계 ​|| $$T_{1...}$$ ​|| $$T_{2...}$$ ​|| $$\cdots$$ ​|| $$T_{l...}$$ ​|| $$T$$ ||+
  
-  $$AC$$ 2원표 + $AC$ 2원표 
-  ​||<​|2> ​[인자] ​$$C$$ |||||||| ​[인자] ​$$A$$ ||<​|2> ​합계 ​|+ [[인자]$C$  ​^ ​ [[인자]$A$  ​^^^^  ​합계 ​ |  
-  ​|| $$A_{1}$$ ​|| $$A_{2}$$ ​|| $$\cdots$$ ​|| $$A_{l}$$ ​|| +^:::^  ​$$A_{1}$$ ​ ​^  ​$$A_{2}$$ ​ ​^  ​$$\cdots$$ ​ ​^  ​$$A_{l}$$  ​^:::
-  |||||||||||| |+ ​$$C_{1}$$ ​  $$T_{1.1.}$$ ​  $$T_{2.1.}$$ ​  $$\cdots$$ ​  $$T_{l.1.}$$ ​  $$T_{..1.}$$ ​ |  
-  ​|| $$C_{1}$$ |$$T_{1.1.}$$ |$$T_{2.1.}$$ |$$\cdots$$ |$$T_{l.1.}$$ |$$T_{..1.}$$ ​|+ ​$$C_{2}$$ ​  $$T_{1.2.}$$ ​  $$T_{2.2.}$$ ​  $$\cdots$$ ​  $$T_{l.2.}$$ ​  $$T_{..2.}$$ ​ |  
-  ​|| $$C_{2}$$ |$$T_{1.2.}$$ |$$T_{2.2.}$$ |$$\cdots$$ |$$T_{l.2.}$$ |$$T_{..2.}$$ ​|+ ​$$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​   ​ $$\vdots$$ ​  $$\vdots$$ ​ |  
-  ​|| $$\vdots$$ |$$\vdots$$ |$$\vdots$$ || || $$\vdots$$ |$$\vdots$$ ​|+ ​$$C_{n}$$ ​  $$T_{1.n.}$$ ​  $$T_{2.n.}$$ ​  $$\cdots$$ ​  $$T_{l.n.}$$ ​  $$T_{..n.}$$ ​ |  
-  ​|| $$C_{n}$$ |$$T_{1.n.}$$ |$$T_{2.n.}$$ |$$\cdots$$ |$$T_{l.n.}$$ |$$T_{..n.}$$ ​|| + ​합계 ​ ​^  ​$$T_{1...}$$ ​ ​^  ​$$T_{2...}$$ ​ ​^  ​$$\cdots$$ ​ ​^  ​$$T_{l...}$$ ​ ​^  ​$$T$$  
-  |||||||||||| |+
-  ​|| 합계 ​|| $$T_{1...}$$ ​|| $$T_{2...}$$ ​|| $$\cdots$$ ​|| $$T_{l...}$$ ​|| $$T$$ ||+
  
-  $$BC$$ 2원표 + $BC$ 2원표 
-  ​||<​|2> ​[인자] ​$$C$$ |||||||| ​[인자] ​$$B$$ ||<​|2> ​합계 ​|+ [[인자]$C$  ​^ ​ [[인자]$B$  ​^^^^  ​합계 ​ |  
-  ​|| $$B_{1}$$ ​|| $$B_{2}$$ ​|| $$\cdots$$ ​|| $$B_{m}$$ ​|| +^:::^  ​$$B_{1}$$ ​ ​^  ​$$B_{2}$$ ​ ​^  ​$$\cdots$$ ​ ​^  ​$$B_{m}$$  ​^:::
-  |||||||||||| |+ ​$$C_{1}$$ ​  $$T_{.11.}$$ ​  $$T_{.21.}$$ ​  $$\cdots$$ ​  $$T_{.m1.}$$ ​  $$T_{..1.}$$ ​ |  
-  ​|| $$C_{1}$$ |$$T_{.11.}$$ |$$T_{.21.}$$ |$$\cdots$$ |$$T_{.m1.}$$ |$$T_{..1.}$$ ​|+ ​$$C_{2}$$ ​  $$T_{.12.}$$ ​  $$T_{.22.}$$ ​  $$\cdots$$ ​  $$T_{.m2.}$$ ​  $$T_{..2.}$$ ​ |  
-  ​|| $$C_{2}$$ |$$T_{.12.}$$ |$$T_{.22.}$$ |$$\cdots$$ |$$T_{.m2.}$$ |$$T_{..2.}$$ ​|+ ​$$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​   ​ $$\vdots$$ ​  $$\vdots$$ ​ |  
-  ​|| $$\vdots$$ |$$\vdots$$ |$$\vdots$$ || || $$\vdots$$ |$$\vdots$$ ​|+ ​$$C_{n}$$ ​  $$T_{.1n.}$$ ​  $$T_{.2n.}$$ ​  $$\cdots$$ ​  $$T_{.mn.}$$ ​  $$T_{..n.}$$ ​ |  
-  ​|| $$C_{n}$$ |$$T_{.1n.}$$ |$$T_{.2n.}$$ |$$\cdots$$ |$$T_{.mn.}$$ |$$T_{..n.}$$ ​|| + ​합계 ​ ​^  ​$$T_{.1..}$$ ​ ​^  ​$$T_{.2..}$$ ​ ​^  ​$$\cdots$$ ​ ​^  ​$$T_{.m..}$$ ​ ​^  ​$$T$$  
-  |||||||||||| |+
-  ​|| 합계 ​|| $$T_{.1..}$$ ​|| $$T_{.2..}$$ ​|| $$\cdots$$ ​|| $$T_{.m..}$$ ​|| $$T$$ ||+
  
-   || $$T_{i...} = \sum_{j=1}^{m} \sum_{k=1}^{n} \sum_{p=1}^{r} y_{ijkp}$$ ​|| $$\overline{y}_{i...} = \frac{T_{i...}}{mnr}$$ ​|+| $$T_{i...} = \sum_{j=1}^{m} \sum_{k=1}^{n} \sum_{p=1}^{r} y_{ijkp}$$ | $$\overline{y}_{i...} = \frac{T_{i...}}{mnr}$$ | 
-   || $$T_{.j..} = \sum_{i=1}^{l} \sum_{k=1}^{n} \sum_{p=1}^{r} y_{ijkp}$$ ​|| $$\overline{y}_{.j..} = \frac{T_{.j..}}{lnr}$$ ​|+| $$T_{.j..} = \sum_{i=1}^{l} \sum_{k=1}^{n} \sum_{p=1}^{r} y_{ijkp}$$ | $$\overline{y}_{.j..} = \frac{T_{.j..}}{lnr}$$ | 
-   || $$T_{..k.} = \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{p=1}^{r} y_{ijkp}$$ ​|| $$\overline{y}_{..k.} = \frac{T_{..k.}}{lmr}$$ ​|+| $$T_{..k.} = \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{p=1}^{r} y_{ijkp}$$ | $$\overline{y}_{..k.} = \frac{T_{..k.}}{lmr}$$ | 
-   || $$T_{ij..} = \sum_{k=1}^{n} \sum_{p=1}^{r} y_{ijkp}$$ ​|| $$\overline{y}_{ij..} = \frac{T_{ij..}}{nr}$$ ​|+| $$T_{ij..} = \sum_{k=1}^{n} \sum_{p=1}^{r} y_{ijkp}$$ | $$\overline{y}_{ij..} = \frac{T_{ij..}}{nr}$$ | 
-   || $$T_{i.k.} = \sum_{j=1}^{m} \sum_{p=1}^{r} y_{ijkp}$$ ​|| $$\overline{y}_{i.k.} = \frac{T_{i.k.}}{mr}$$ ​|+| $$T_{i.k.} = \sum_{j=1}^{m} \sum_{p=1}^{r} y_{ijkp}$$ | $$\overline{y}_{i.k.} = \frac{T_{i.k.}}{mr}$$ | 
-   || $$T_{.jk.} = \sum_{i=1}^{l} \sum_{p=1}^{r} y_{ijkp}$$ ​|| $$\overline{y}_{.jk.} = \frac{T_{.jk.}}{lr}$$ ​|+| $$T_{.jk.} = \sum_{i=1}^{l} \sum_{p=1}^{r} y_{ijkp}$$ | $$\overline{y}_{.jk.} = \frac{T_{.jk.}}{lr}$$ | 
-   || $$T_{ijk.} = \sum_{p=1}^{r} y_{ijkp}$$ ​|| $$\overline{y}_{ijk.} = \frac{T_{ijk.}}{r}$$ ​|+| $$T_{ijk.} = \sum_{p=1}^{r} y_{ijkp}$$ | $$\overline{y}_{ijk.} = \frac{T_{ijk.}}{r}$$ | 
-   || $$T = \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \sum_{p=1}^{r} y_{ijkp}$$ ​|| $$\overline{\overline{y}} = \frac{T}{lmnr} = \frac{T}{N}$$ ​|+| $$T = \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \sum_{p=1}^{r} y_{ijkp}$$ | $$\overline{\overline{y}} = \frac{T}{lmnr} = \frac{T}{N}$$ | 
-   || $$N = lmnr$$ ​|| $$CT = \frac{T^{2}}{lmnr} = \frac{T^{2}}{N}$$ |+| $$N = lmnr$$ | $$CT = \frac{T^{2}}{lmnr} = \frac{T^{2}}{N}$$ | 
----- +===== 제곱합 ===== 
-===== [제곱합===== + ​개개의 데이터 $y_{ijkp}$와 총균 $\overline{\overline{y}}$의 차이는 다음과 같이 8부분으로 나뉘어진다.
- ​개개의 데이터&​nbsp&​nbsp $$y_{ijkp}$$ 와 총&​nbsp&​nbsp $$\overline{\overline{y}}$$ 의 차이는 다음과 같이 8부분으로 나뉘어진다.+
  
-  ​$$\begin{displaymath}\begin{split} (y_{ijkp}-\overline{\overline{y}}) &= (\overline{y}_{i...} - \overline{\overline{y}}) + (\overline{y}_{.j..} - \overline{\overline{y}}) + (\overline{y}_{..k.} - \overline{\overline{y}}) \\ &+ (\overline{y}_{ij..} - \overline{y}_{i...} - \overline{y}_{.j..} + \overline{\overline{y}}) + (\overline{y}_{i.k.} - \overline{y}_{i...} - \overline{y}_{..k.} + \overline{\overline{y}}) + (\overline{y}_{.jk.} - \overline{y}_{.j..} - \overline{y}_{..k.} + \overline{\overline{y}}) \\ &+ (y_{ijk.} - \overline{y}_{ij..} - \overline{y}_{i.k.} - \overline{y}_{.jk.} + \overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - \overline{\overline{y}}) \\ &+ (y_{ijkp}-\overline{y}_{ijk.}) \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} (y_{ijkp}-\overline{\overline{y}}) &= (\overline{y}_{i...} - \overline{\overline{y}}) + (\overline{y}_{.j..} - \overline{\overline{y}}) + (\overline{y}_{..k.} - \overline{\overline{y}}) \\ &+ (\overline{y}_{ij..} - \overline{y}_{i...} - \overline{y}_{.j..} + \overline{\overline{y}}) + (\overline{y}_{i.k.} - \overline{y}_{i...} - \overline{y}_{..k.} + \overline{\overline{y}}) + (\overline{y}_{.jk.} - \overline{y}_{.j..} - \overline{y}_{..k.} + \overline{\overline{y}}) \\ &+ (y_{ijk.} - \overline{y}_{ij..} - \overline{y}_{i.k.} - \overline{y}_{.jk.} + \overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - \overline{\overline{y}}) \\ &+ (y_{ijkp}-\overline{y}_{ijk.}) \end{split}\end{displaymath}$$
  
- ​양변을 제곱한 후에 모든&​nbsp&​nbsp $$i, \ j, \ k, \ p$$ 에 대하여 합하면 아래의 등식을 얻을 수 있다.+ ​양변을 제곱한 후에 모든 $i, \ j, \ k, \ p$에 대하여 합하면 아래의 등식을 얻을 수 있다.
  
-  ​$$\begin{displaymath}\begin{split} \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i...} - \overline{\overline{y}})^{2} + \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.j..} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{..k.} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..} - \overline{y}_{i...} - \overline{y}_{.j..} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.} - \overline{y}_{i...} - \overline{y}_{..k.} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.} - \overline{y}_{.j..} - \overline{y}_{..k.} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.} - \overline{y}_{ij..} - \overline{y}_{i.k.} - \overline{y}_{.jk.} + \overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{y}_{ijk.})^{2} \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i...} - \overline{\overline{y}})^{2} + \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.j..} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{..k.} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..} - \overline{y}_{i...} - \overline{y}_{.j..} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.} - \overline{y}_{i...} - \overline{y}_{..k.} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.} - \overline{y}_{.j..} - \overline{y}_{..k.} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.} - \overline{y}_{ij..} - \overline{y}_{i.k.} - \overline{y}_{.jk.} + \overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{y}_{ijk.})^{2} \end{split}\end{displaymath}$$
  
- 위 식에서 왼쪽 항은 총변동 ​$$S_{T}$$ 이고, 오른쪽 항은 차례대로&​nbsp&​nbsp $$A$$ 의 [변동],&​nbsp&​nbsp $$B$$ 의 [변동],&​nbsp&​nbsp $$C$$ 의 [변동],&​nbsp&​nbsp $$A, \ B$$ 의 [교호작용]의 변동,&​nbsp&​nbsp $$A, \ C$$ 의 [교호작용]의 변동,&​nbsp&​nbsp $$B, \ C$$ 의 [교호작용]의 변동,&​nbsp&​nbsp $$A, \ B, \ C$$ 의 [교호작용]의 변동, [오차변동]인&​nbsp&​nbsp $$S_{A}$$ , $$S_{B}$$ , $$S_{C}$$ , $$S_{A \times B}$$ , $$S_{A \times C}$$ , $$S_{B \times C}$$ , $$S_{A \times B \times C}$$ , $$S_{E}$$ 가 된다.+ 위 식에서 왼쪽 항은 총변동 $S_{T}$이고,​ 오른쪽 항은 차례대로 $A$의 ​[[변동]], $B$의 ​[[변동]], $C$의 ​[[변동]], $A, \ B$의 [[교호작용]]의 변동, $A, \ C$의 [[교호작용]]의 변동, $B, \ C$의 [[교호작용]]의 [[변동]], $A, \ B, \ C$의 [[교호작용]]의 변동, ​[[오차변동]]인 $S_{A}$, $S_{B}$, $S_{C}$, $S_{A \times B}$, $S_{A \times C}$, $S_{B \times C}$, $S_{A \times B \times C}$, $S_{E}$가 된다.
  
 + ​$$\begin{displaymath}\begin{split} S_{T} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}y_{ijkp}^{ \ 2} - CT \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{T} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}y_{ijkp}^{ \ 2} - CT \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{A} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{i...}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\frac{T_{i...}^{ \ 2}}{mnr}-CT \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{A} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{i...}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\frac{T_{i...}^{ \ 2}}{mnr}-CT \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{B} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{.j..}-\overline{\overline{y}})^{2} \\ &= \sum_{j=1}^{m}\frac{T_{.j..}^{ \ 2}}{lnr}-CT \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{B} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{.j..}-\overline{\overline{y}})^{2} \\ &= \sum_{j=1}^{m}\frac{T_{.j..}^{ \ 2}}{lnr}-CT \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{..k.}-\overline{\overline{y}})^{2} \\ &= \sum_{k=1}^{n}\frac{T_{..k.}^{ \ 2}}{lmr}-CT \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{..k.}-\overline{\overline{y}})^{2} \\ &​= ​\sum_{k=1}^{n}\frac{T_{..k.}^{ \ 2}}{lmr}-CT ​\end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{A \times B} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..}-\overline{y}_{i...}-\overline{y}_{.j..}+\overline{\overline{y}})^{2} \\ &​= ​S_{AB- S_{A- S_{B} \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{A \times B} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..}-\overline{y}_{i...}-\overline{y}_{.j..}+\overline{\overline{y}})^{2} \\ &S_{AB- S_{A- S_{B} \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{AB} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m\frac{T_{ij..}^\ 2}}{nr} -CT \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{AB} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m} ​\frac{T_{ij..}^{ 2}}{nr} -CT \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{A \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.}-\overline{y}_{i...}-\overline{y}_{..k.}+\overline{\overline{y}})^{2} \\ &= S_{AC- S_{A} - S_{C} \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{A \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.}-\overline{y}_{i...}-\overline{y}_{..k.}+\overline{\overline{y}})^{2} \\ &S_{AC- S_{A- S_{C} \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{AC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{k=1}^{n\frac{T_{i.k.}^\ 2}}{mr} -CT \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{AC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{k=1}^{n\frac{T_{i.k.}^\ 2}}{mr} -CT \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{B \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.}-\overline{y}_{.j..}-\overline{y}_{..k.}+\overline{\overline{y}})^{2} \\ &S_{BC- S_{B- S_{C} \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{B \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.}-\overline{y}_{.j..}-\overline{y}_{..k.}+\overline{\overline{y}})^{2} \\ &S_{BC- S_{B- S_{C} \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{BC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.}-\overline{\overline{y}})^{2} \\ &= \sum_{j=1}^{m}\sum_{k=1}^{n\frac{T_{.jk.}^\ 2}}{lr} -CT \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{BC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.}-\overline{\overline{y}})^{2} \\ &​= ​\sum_{j=1}^{m}\sum_{k=1}^{n\frac{T_{.jk.}^{ \ 2}}{lr-CT \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{A \times B \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.}-\overline{y}_{ij..}-\overline{y}_{i.k.}-\overline{y}_{.jk.}+\overline{y}_{i...}+\overline{y}_{.j..}+\overline{y}_{..k.}-\overline{\overline{y}})^{2} \\ &​= ​S_{ABC}-(S_{A}+S_{B}+S_{C}+S_{A \times B}+S_{\times C}+S_{B \times C}\end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{A \times B \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.}-\overline{y}_{ij..}-\overline{y}_{i.k.}-\overline{y}_{.jk.}+\overline{y}_{i...}+\overline{y}_{.j..}+\overline{y}_{..k.}-\overline{\overline{y}})^{2} \\ &= S_{ABC}-(S_{A}+S_{B}+S_{C}+S_{\times B}+S_{A \times C}+S_{B \times C}\end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{ABC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\frac{T_{ijk.}^{ \ 2}}{r-CT \end{split}\end{displaymath}$$
  
-  $$\begin{displaymath}\begin{split} S_{ABC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\frac{T_{ijk.}^{ \ 2}}{r} -CT \end{split}\end{displaymath}$$ + ​$$\begin{displaymath}\begin{split} S_{E} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} \\ &= S_{T} - S_{ABC} \end{split}\end{displaymath}$$ 
- +===== 자유도 =====
-  ​$$\begin{displaymath}\begin{split} S_{E} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} \\ &= S_{T} - S_{ABC} \end{split}\end{displaymath}$$ +
----- +
-===== [자유도=====+
  ​$$\nu_{A}=l-1$$  ​$$\nu_{A}=l-1$$
  
줄 175: 줄 150:
  
  ​$$\nu_{T}=lmnr-1=N-1$$  ​$$\nu_{T}=lmnr-1=N-1$$
----- +===== 평균제곱 =====
-===== [평균제곱=====+
  ​$$V_{A}=\frac{S_{A}}{\nu_{A}}$$  ​$$V_{A}=\frac{S_{A}}{\nu_{A}}$$
  
줄 192: 줄 166:
  
  ​$$V_{E}=\frac{S_{E}}{\nu_{E}}$$  ​$$V_{E}=\frac{S_{E}}{\nu_{E}}$$
----- +===== 평균제곱의 기대값 =====
-===== [평균제곱의 기대값=====+
  ​$$E(V_{A})=\sigma_{E}^{ \ 2} +mnr \sigma_{A}^{ \ 2}$$  ​$$E(V_{A})=\sigma_{E}^{ \ 2} +mnr \sigma_{A}^{ \ 2}$$
  
줄 209: 줄 182:
  
  ​$$E(V_{E})=\sigma_{E}^{ \ 2}$$  ​$$E(V_{E})=\sigma_{E}^{ \ 2}$$
----- 
 ===== 분산분석표 ===== ===== 분산분석표 =====
- || '''​[요인]'''​ || '''​[제곱합]'''​ $$SS$$ || '''​[자유도]'''​ $$DF$$ || '''​[평균제곱]'''​ $$MS$$ || $$E(MS)$$ || $$F_{0}$$ || '''​기각치'''​ || '''​[순변동]'''​ $$ S\acute{} $$ || '''​[기여율]'''​ $$\rho$$ |+ [[요인]]  ^  [[제곱합]]\\ $SS$  ​^ ​ [[자유도]]\\ $DF$  ​^ ​ [[평균제곱]]\\ $MS$  ​^  ​$E(MS)$ ​ ​^  ​$F_{0}$ ​ ​^ ​ [[기각치]]  ^  [[순변동]]\\ $S\acute{}$ ​ ​^ ​ [[기여율]]\\ $\rho$ ​ |  
- |||||||||||||||||| || + $$A$$   $$S_{_{A}}$$ ​  $$\nu_{_{A}}=l-1$$ ​  $$V_{_{A}}=S_{_{A}}/​\nu_{_{A}}$$ ​  $$\sigma_{_{E}}^{ \ 2}+mnr \ \sigma_{_{A}}^{2}$$ ​  $$V_{_{A}}/​V_{_{E}}$$ ​  $$F_{1-\alpha}(\nu_{_{A}} \ , \ \nu_{_{E}})$$ ​  $$S_{_{A}}\acute{}$$ ​  $$S_{_{A}}\acute{}/​S_{_{T}}$$ ​ |  
- ​|| ​$$A$$ |$$S_{_{A}}$$ |$$\nu_{_{A}}=l-1$$ |$$V_{_{A}}=S_{_{A}}/​\nu_{_{A}}$$ |$$\sigma_{_{E}}^{ \ 2}+mnr \ \sigma_{_{A}}^{2}$$ |$$V_{_{A}}/​V_{_{E}}$$ |$$F_{1-\alpha}(\nu_{_{A}} \ , \ \nu_{_{E}})$$ |$$S_{_{A}}\acute{}$$ |$$S_{_{A}}\acute{}/​S_{_{T}}$$ ​|+ $$B$$   $$S_{_{B}}$$ ​  $$\nu_{_{B}}=m-1$$ ​  $$V_{_{B}}=S_{_{B}}/​\nu_{_{B}}$$ ​  $$\sigma_{_{E}}^{ \ 2}+lnr \ \sigma_{_{B}}^{2}$$ ​  $$V_{_{B}}/​V_{_{E}}$$ ​  $$F_{1-\alpha}(\nu_{_{B}} \ , \ \nu_{_{E}})$$ ​  $$S_{_{B}}\acute{}$$ ​  $$S_{_{B}}\acute{}/​S_{_{T}}$$ ​ |  
- |$$B$$ |$$S_{_{B}}$$ |$$\nu_{_{B}}=m-1$$ |$$V_{_{B}}=S_{_{B}}/​\nu_{_{B}}$$ |$$\sigma_{_{E}}^{ \ 2}+lnr \ \sigma_{_{B}}^{2}$$ |$$V_{_{B}}/​V_{_{E}}$$ |$$F_{1-\alpha}(\nu_{_{B}} \ , \ \nu_{_{E}})$$ |$$S_{_{B}}\acute{}$$ |$$S_{_{B}}\acute{}/​S_{_{T}}$$ ​|+ $$C$$   $$S_{_{C}}$$ ​  $$\nu_{_{C}}=n-1$$ ​  $$V_{_{C}}=S_{_{C}}/​\nu_{_{C}}$$ ​  $$\sigma_{_{E}}^{ \ 2}+lmr \ \sigma_{_{C}}^{2}$$ ​  $$V_{_{C}}/​V_{_{E}}$$ ​  $$F_{1-\alpha}(\nu_{_{C}} \ , \ \nu_{_{E}})$$ ​  $$S_{_{C}}\acute{}$$ ​  $$S_{_{C}}\acute{}/​S_{_{T}}$$ ​ |  
- |$$C$$ |$$S_{_{C}}$$ |$$\nu_{_{C}}=n-1$$ |$$V_{_{C}}=S_{_{C}}/​\nu_{_{C}}$$ |$$\sigma_{_{E}}^{ \ 2}+lmr \ \sigma_{_{C}}^{2}$$ |$$V_{_{C}}/​V_{_{E}}$$ |$$F_{1-\alpha}(\nu_{_{C}} \ , \ \nu_{_{E}})$$ |$$S_{_{C}}\acute{}$$ |$$S_{_{C}}\acute{}/​S_{_{T}}$$ ​|+ $$A \times B$$   $$S_{_{A \times B}}$$   $$\nu_{_{A \times B}}=(l-1)(m-1)$$ ​  $$V_{_{A \times B}}=S_{_{A \times B}}/​\nu_{_{A \times B}}$$   $$\sigma_{_{E}}^{ \ 2}+nr \ \sigma_{_{A \times B}}^{2}$$ ​  $$V_{_{A \times B}}/​V_{_{E}}$$ ​  $$F_{1-\alpha}(\nu_{_{A \times B}} \ , \ \nu_{_{E}})$$ ​  $$S_{_{A \times B}}\acute{}$$ ​  $$S_{_{A \times B}}\acute{}/​S_{_{T}}$$ ​ |  
- |$$A \times B$$ |$$S_{_{A \times B}}$$ |$$\nu_{_{A \times B}}=(l-1)(m-1)$$ |$$V_{_{A \times B}}=S_{_{A \times B}}/​\nu_{_{A \times B}}$$ |$$\sigma_{_{E}}^{ \ 2}+nr \ \sigma_{_{A \times B}}^{2}$$ |$$V_{_{A \times B}}/​V_{_{E}}$$ |$$F_{1-\alpha}(\nu_{_{A \times B}} \ , \ \nu_{_{E}})$$ |$$S_{_{A \times B}}\acute{}$$ |$$S_{_{A \times B}}\acute{}/​S_{_{T}}$$ ​|+ $$A \times C$$   $$S_{_{A \times C}}$$   $$\nu_{_{A \times C}}=(l-1)(n-1)$$ ​  $$V_{_{A \times C}}=S_{_{A \times C}}/​\nu_{_{A \times C}}$$   $$\sigma_{_{E}}^{ \ 2}+mr \ \sigma_{_{A \times C}}^{2}$$ ​  $$V_{_{A \times C}}/​V_{_{E}}$$ ​  $$F_{1-\alpha}(\nu_{_{A \times C}} \ , \ \nu_{_{E}})$$ ​  $$S_{_{A \times C}}\acute{}$$ ​  $$S_{_{A \times C}}\acute{}/​S_{_{T}}$$ ​ |  
- |$$A \times C$$ |$$S_{_{A \times C}}$$ |$$\nu_{_{A \times C}}=(l-1)(n-1)$$ |$$V_{_{A \times C}}=S_{_{A \times C}}/​\nu_{_{A \times C}}$$ |$$\sigma_{_{E}}^{ \ 2}+mr \ \sigma_{_{A \times C}}^{2}$$ |$$V_{_{A \times C}}/​V_{_{E}}$$ |$$F_{1-\alpha}(\nu_{_{A \times C}} \ , \ \nu_{_{E}})$$ |$$S_{_{A \times C}}\acute{}$$ |$$S_{_{A \times C}}\acute{}/​S_{_{T}}$$ ​|+ $$B \times C$$   $$S_{_{B \times C}}$$   $$\nu_{_{B \times C}}=(m-1)(n-1)$$ ​  $$V_{_{B \times C}}=S_{_{B \times C}}/​\nu_{_{B \times C}}$$   $$\sigma_{_{E}}^{ \ 2}+lr \ \sigma_{_{B \times C}}^{2}$$ ​  $$V_{_{B \times C}}/​V_{_{E}}$$ ​  $$F_{1-\alpha}(\nu_{_{B \times C}} \ , \ \nu_{_{E}})$$ ​  $$S_{_{B \times C}}\acute{}$$ ​  $$S_{_{B \times C}}\acute{}/​S_{_{T}}$$ ​ |  
- |$$B \times C$$ |$$S_{_{B \times C}}$$ |$$\nu_{_{B \times C}}=(m-1)(n-1)$$ |$$V_{_{B \times C}}=S_{_{B \times C}}/​\nu_{_{B \times C}}$$ |$$\sigma_{_{E}}^{ \ 2}+lr \ \sigma_{_{B \times C}}^{2}$$ |$$V_{_{B \times C}}/​V_{_{E}}$$ |$$F_{1-\alpha}(\nu_{_{B \times C}} \ , \ \nu_{_{E}})$$ |$$S_{_{B \times C}}\acute{}$$ |$$S_{_{B \times C}}\acute{}/​S_{_{T}}$$ ​|+ $$A \times B \times C$$   $$S_{_{A \times B \times C}}$$   $$\nu_{_{A \times B \times C}}=(l-1)(m-1)(n-1)$$ ​  $$V_{_{A \times B \times C}}=S_{_{A \times B \times C}}/​\nu_{_{A \times B \times C}}$$   $$\sigma_{_{E}}^{ \ 2}+r \ \sigma_{_{A \times B \times C}}^{ \ 2}$$   $$V_{_{A \times B \times C}}/​V_{_{E}}$$ ​  $$F_{1-\alpha}(\nu_{_{A \times B \times C}} \ , \ \nu_{_{E}})$$ ​  $$S_{_{A \times B \times C}}\acute{}$$ ​  $$S_{_{A \times B \times C}}\acute{}/​S_{_{T}}$$ ​ |  
- |$$A \times B \times C$$ |$$S_{_{A \times B \times C}}$$ |$$\nu_{_{A \times B \times C}}=(l-1)(m-1)(n-1)$$ |$$V_{_{A \times B \times C}}=S_{_{A \times B \times C}}/​\nu_{_{A \times B \times C}}$$ |$$\sigma_{_{E}}^{ \ 2}+r \ \sigma_{_{A \times B \times C}}^{ \ 2}$$ |$$V_{_{A \times B \times C}}/​V_{_{E}}$$ |$$F_{1-\alpha}(\nu_{_{A \times B \times C}} \ , \ \nu_{_{E}})$$ |$$S_{_{A \times B \times C}}\acute{}$$ |$$S_{_{A \times B \times C}}\acute{}/​S_{_{T}}$$ ​|+ $$E$$   $$S_{_{E}}$$ ​  $$\nu_{_{E}}=lmn(r-1)$$ ​  $$V_{_{E}}=S_{_{E}}/​\nu_{_{E}}$$ ​  $$\sigma_{_{E}}^{ \ 2}$$        |  $$S_{_{E}}\acute{}$$ ​  $$S_{_{E}}\acute{}/​S_{_{T}}$$ ​ |  
- |$$E$$ |$$S_{_{E}}$$ |$$\nu_{_{E}}=lmn(r-1)$$ |$$V_{_{E}}=S_{_{E}}/​\nu_{_{E}}$$ |$$\sigma_{_{E}}^{ \ 2}$$ ||  ||  ​|| $$S_{_{E}}\acute{}$$ |$$S_{_{E}}\acute{}/​S_{_{T}}$$ ​|+ $$T$$   $$S_{_{T}}$$ ​  $$\nu_{_{T}}=lmnr-1$$ ​ |             |  $$S_{_{T}}$$ ​  $$1$$  |  
- |||||||||||||||||| || +===== 분산분석 ===== 
- ​|| ​$$T$$ |$$S_{_{T}}$$ |$$\nu_{_{T}}=lmnr-1$$ ​||  ​|| ​ ||  ||  ​|| $$S_{_{T}}$$ |$$1$$ |+ [[인자]] $A$에 대한 ​[[분산분석]
----- + 
-===== [분산분석===== +  * $$F_{0}=\frac{V_{_{A}}}{V_{_{E}}}$$
- ​인자&​nbsp&​nbsp $$A$$ 에 대한 [분산분석]+
  
-  $$F_{0}=\frac{V_{_{A}}}{V_{_{E}}}$$+ ​[[기각역]] : $F_{0} ​> F_{1-\alpha}(\nu_{_{A}},\nu_{_{E}})$
  
-  [기각역] :&​nbsp&​nbsp $$F_{0} > F_{1-\alpha}(\nu_{_{A}},​\nu_{_{E}})$$ 
 ---- ----
- ​인자&​nbsp&​nbsp $$B$$ 에 대한 [분산분석]+ [[인자]] $B$에 대한 ​[[분산분석]]
  
-  $$F_{0}=\frac{V_{_{B}}}{V_{_{E}}}$$+  ​$$F_{0}=\frac{V_{_{B}}}{V_{_{E}}}$
 + 
 + ​[[기각역]] : $F_{0} > F_{1-\alpha}(\nu_{_{B}},​\nu_{_{E}})$
  
-  [기각역] :&​nbsp&​nbsp $$F_{0} > F_{1-\alpha}(\nu_{_{B}},​\nu_{_{E}})$$ 
 ---- ----
- ​인자&​nbsp&​nbsp $$C$$ 에 대한 [분산분석]+ [[인자]] $C$에 대한 ​[[분산분석]]
  
-  $$F_{0}=\frac{V_{_{C}}}{V_{_{E}}}$$+  ​$$F_{0}=\frac{V_{_{C}}}{V_{_{E}}}$
 + 
 + ​[[기각역]] : $F_{0} > F_{1-\alpha}(\nu_{_{C}},​\nu_{_{E}})$
  
-  [기각역] :&​nbsp&​nbsp $$F_{0} > F_{1-\alpha}(\nu_{_{C}},​\nu_{_{E}})$$ 
 ---- ----
- ​인자&​nbsp&​nbsp $$A , \ B$$ 의 [교호작용] 대한 [분산분석]+ [[인자]] $A , \ B$의 [[교호작용]]에 대한 ​[[분산분석]
 + 
 +  * $$F_{0}=\frac{V_{_{A \times B}}}{V_{E}}$$
  
-  $$F_{0}=\frac{V_{_{A \times B}}}{V_{E}}$$+ ​[[기각역]] : $F_{0} ​> F_{1-\alpha}(\nu_{_{A \times B}},\nu_{_{E}})$
  
-  [기각역] :&​nbsp&​nbsp $$F_{0} > F_{1-\alpha}(\nu_{_{A \times B}},​\nu_{_{E}})$$ 
 ---- ----
- ​인자&​nbsp&​nbsp $$A , \ C$$ 의 [교호작용] 대한 [분산분석]+ [[인자]] $A , \ C$의 [[교호작용]]에 대한 ​[[분산분석]]
  
-  $$F_{0}=\frac{V_{_{A \times C}}}{V_{E}}$$+  ​$$F_{0}=\frac{V_{_{A \times C}}}{V_{E}}$
 + 
 + ​[[기각역]] : $F_{0} > F_{1-\alpha}(\nu_{_{A \times C}},​\nu_{_{E}})$
  
-  [기각역] :&​nbsp&​nbsp $$F_{0} > F_{1-\alpha}(\nu_{_{A \times C}},​\nu_{_{E}})$$ 
 ---- ----
- ​인자&​nbsp&​nbsp $$B , \ C$$ 의 [교호작용] 대한 [분산분석]+ [[인자]] $B , \ C$의 [[교호작용]]에 대한 ​[[분산분석]]
  
-  $$F_{0}=\frac{V_{B \times C}}{V_{E}}$$+  ​$$F_{0}=\frac{V_{B \times C}}{V_{E}}$
 + 
 + ​[[기각역]] : $F_{0} > F_{1-\alpha}(\nu_{_{B \times C}},​\nu_{_{E}})$
  
-  [기각역] :&​nbsp&​nbsp $$F_{0} > F_{1-\alpha}(\nu_{_{B \times C}},​\nu_{_{E}})$$ 
 ---- ----
- ​인자&​nbsp&​nbsp $$A , \ B , \ C$$ 의 [교호작용] 대한 [분산분석]+ [[인자]] $A , \ B , \ C$의 [[교호작용]]에 대한 ​[[분산분석]]
  
-  $$F_{0}=\frac{V_{A \times B \times C}}{V_{E}}}$$+  ​$$F_{0}=\frac{V_{A \times B \times C}}{V_{E}}}$$
  
-  ​[기각역] :&​nbsp&​nbsp $$F_{0} > F_{1-\alpha}(\nu_{A \times B \times C},​\nu_{_{E}})$+ [[기각역]] : $F_{0} > F_{1-\alpha}(\nu_{A \times B \times C},​\nu_{_{E}})$ 
----- +===== 각 수준의 모평균의 추정 (주효과만이 유의한 경우) ===== 
-===== 각 [수준]의 [모평균]의 [추정(주효과만이 유의한 경우) ===== + ​주효과인 ​[[인자]] $A, B, C$만이 유의한 경우 ​[[교호작용]]들이 모두 오차항에 ​[[풀링]]되어 버린다.
- ​주효과인 인자&nbsp $$A, B, C$$ 만이 유의한 경우 [교호작용]들이 모두 오차항에 [풀링]되어 버린다.+
  
- (단,&​nbsp&​nbsp $$S_{E}\acute{}=S_{E}+S_{A \times B}+S_{A \times C}+S_{B \times C}+S_{A \times B \times C}, \ \nu_{E}\acute{}=\nu_{E}+\nu_{A \times B}+\nu_{A \times C}+\nu_{B \times C}+\nu_{A \times B \times C}, \ V_{E}\acute{}=S_{E}\acute{}/​\nu_{E}\acute{}$$ 이다.)+ (단, $S_{E}\acute{}=S_{E}+S_{A \times B}+S_{A \times C}+S_{B \times C}+S_{A \times B \times C}, \ \nu_{E}\acute{}=\nu_{E}+\nu_{A \times B}+\nu_{A \times C}+\nu_{B \times C}+\nu_{A \times B \times C}, \ V_{E}\acute{}=S_{E}\acute{}/​\nu_{E}\acute{}$이다.)
  
 + ​[[인자]] $A$의 [[모평균]]에 관한 [[추정]]
  
- * '''​[인자]&​nbsp&​nbsp $$A$$ 의 [모평균]에 관한 ​[추정]'''​+ $i[[수준]]에서의 [[모평균]] $\mu(A_{i})$의 ​[[점추정]]값
  
-  ​$$i$$ [수준]에서의 [모평균]&​nbsp&​nbsp ​$$\mu(A_{i})$$ ​의 [점추정]값+  ​$$\hat{\mu}(A_{i})=\widehat{\mu + a_{i}} = \overline{y}_{i...}$$
  
-   $$\hat{\mu}(A_{i})=\widehat{\mu + a_{i}} = \overline{y}_{i...}$$+ $i$ [[수준]]에서의 [[모평균]] ​$\mu(A_{i})$의 $100(1-\alpha) ​\% $ [[신뢰구간]]은 아래와 같다.
  
 +  * $$\hat{\mu}(A_{i})= \left( \overline{y}_{i...} - t_{\alpha/​2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{mnr}} \ , \ \overline{y}_{i...} + t_{\alpha/​2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{mnr}} \right)$$
  
-  $$i$$ [수준]에서의 [모평균]&​nbsp&​nbsp $$\mu(A_{i})$$ 의&​nbsp&​nbsp $$100(1-\alpha) \% $$ [신뢰구간]은 아래와 같다. 
- 
-   ​$$\hat{\mu}(A_{i})= \left( \overline{y}_{i...} - t_{\alpha/​2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{mnr}} \ , \ \overline{y}_{i...} + t_{\alpha/​2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{mnr}} \right)$$ 
 ---- ----
- * '''​[인자]&​nbsp&​nbsp $$B$$ 의 [모평균]에 관한 [추정]'''​+ [[인자]$B$의 ​[[모평균]]에 관한 ​[[추정]]
  
-  $$j$$ [수준]에서의 [모평균]&​nbsp&​nbsp $$\mu(B_{j})$$ 의 [점추정]값+ $j$ [[수준]]에서의 ​[[모평균]$\mu(B_{j})$의 ​[[점추정]]값
  
-   $$\hat{\mu}(B_{j})=\widehat{\mu + b_{j}} = \overline{y}_{.j..}$$+  * $$\hat{\mu}(B_{j})=\widehat{\mu + b_{j}} = \overline{y}_{.j..}$$
  
 + $j$ [[수준]]에서의 [[모평균]] $\mu(B_{j})$의 $100(1-\alpha) \%$ [[신뢰구간]]은 아래와 같다.
  
-  $$j$$ [수준]에서의 [모평균]&​nbsp&​nbsp $$\mu(B_{j})$$ 의&​nbsp&​nbsp $$100(1-\alpha) \$$ [신뢰구간]은 아래와 같다.+  ​$$\hat{\mu}(B_{j})= \left\overline{y}_{.j..} ​t_{\alpha/​2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{lnr}} \ , \ \overline{y}_{.j..} + t_{\alpha/​2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{lnr}} \right)$$
  
-   ​$$\hat{\mu}(B_{j})= \left( \overline{y}_{.j..} - t_{\alpha/​2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{lnr}} \ , \ \overline{y}_{.j..} + t_{\alpha/​2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{lnr}} \right)$$ 
 ---- ----
- * '''​[인자]&​nbsp&​nbsp $$C$$ 의 [모평균]에 관한 [추정]'''​+ [[인자]$C$의 ​[[모평균]]에 관한 ​[[추정]]
  
-  $$k$$ [수준]에서의 [모평균]&​nbsp&​nbsp $$\mu(C_{k})$$ 의 [점추정]값+ $k$ [[수준]]에서의 ​[[모평균]$\mu(C_{k})$의 ​[[점추정]]값
  
-   $$\hat{\mu}(C_{k})=\widehat{\mu + c_{k}} = \overline{y}_{..k.}$$+  * $$\hat{\mu}(C_{k})=\widehat{\mu + c_{k}} = \overline{y}_{..k.}$$
  
 + $k$ [[수준]]에서의 [[모평균]] $\mu(C_{k})$의 $100(1-\alpha) \% $ [[신뢰구간]]은 아래와 같다.
  
-  $$k$$ [수준]에서의 [모평균]&​nbsp&​nbsp $$\mu(C_{k})$$ 의&​nbsp&​nbsp $$100(1-\alpha) \$$ [신뢰구간]은 아래와 같다.+  ​$$\hat{\mu}(C_{k})= \left\overline{y}_{..k.} ​t_{\alpha/​2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{lmr}} \ , \ \overline{y}_{..k.} + t_{\alpha/​2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{lmr}} \right)$$
  
-   ​$$\hat{\mu}(C_{k})= \left( \overline{y}_{..k.} - t_{\alpha/​2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{lmr}} \ , \ \overline{y}_{..k.} + t_{\alpha/​2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{lmr}} \right)$$ 
 ---- ----
- * '''​[인자]&​nbsp&​nbsp $$A$$ 와&​nbsp&​nbsp $$B$$ &​nbsp&​nbsp그리고&​nbsp&​nbsp $$C$$ 의 [모평균]에 관한 [추정]'''​ + [[인자]$A$와 $B$ 그리고 $C$의 ​[[모평균]]에 관한 ​[[추정]]
- +
-  $$A$$ [인자]의&​nbsp&​nbsp $$i$$ [수준]과&​nbsp&​nbsp $$B$$ [인자]의&​nbsp&​nbsp $$j$$ [수준],&​nbsp&​nbsp $$C$$ [인자]의&​nbsp&​nbsp $$k$$ [수준]에서의 [모평균]&​nbsp&​nbsp $$\mu(A_{i}B_{j}C_{k})$$ 의 [점추정]+
  
-   $$\hat{\mu}(A_{i}B_{j}C_{k})=\widehat{\mu+a_{i}+b_{j}+c_{k}}=\overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - 2 \overline{\overline{y}}$$+ $A$ [[인자]]의 $i$ [[수준]]과 $B$ [[인자]]의 $j$ [[수준]], $C$ [[인자]]의 $k$ [[수준]]에서의 [[모평균]] ​$\mu(A_{i}B_{j}C_{k})$의 [[점추정]]값
  
 +  * $$\hat{\mu}(A_{i}B_{j}C_{k})=\widehat{\mu+a_{i}+b_{j}+c_{k}}=\overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - 2 \overline{\overline{y}}$$
  
-  $$A$$ [인자]의&​nbsp&​nbsp $$i$$ [수준]과&​nbsp&​nbsp $$B$[인자]의&​nbsp&​nbsp $$j$$ [수준],&​nbsp&​nbsp $$C$$ [인자]의&​nbsp&​nbsp $$k$$ [수준]에서의 [모평균]&​nbsp&​nbsp $$\mu(A_{i}B_{j}C_{k})$$ 의&​nbsp&​nbsp $$100(1-\alpha) \% $$ [신뢰구간]은 아래와 같다.+ $A$ [[인자]]의 $i$ [[수준]]과 $B$ [[인자]]의 $j$ [[수준]], $C$ [[인자]]의 $k$ [[수준]]에서의 ​[[모평균]$\mu(A_{i}B_{j}C_{k})$의 $100(1-\alpha) \% $ [[신뢰구간]]은 아래와 같다.
  
-   $$\hat{\mu}(A_{i}B_{j}C_{k})= \left( (\overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - 2\overline{\overline{y}}) - t_{\alpha/​2}(\nu_{E}\acute{} \ )\sqrt{\frac{V_{E}\acute{}}{n_{e}}} \ , \ (\overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - 2\overline{\overline{y}}) - t_{\alpha/​2}(\nu_{E}\acute{} \ )\sqrt{\frac{V_{E}\acute{}}{n_{e}}} \right)$$+  * $$\hat{\mu}(A_{i}B_{j}C_{k})= \left( (\overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - 2\overline{\overline{y}}) - t_{\alpha/​2}(\nu_{E}\acute{} \ )\sqrt{\frac{V_{E}\acute{}}{n_{e}}} \ , \ (\overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - 2\overline{\overline{y}}) - t_{\alpha/​2}(\nu_{E}\acute{} \ )\sqrt{\frac{V_{E}\acute{}}{n_{e}}} \right)$$
  
-   단,&​nbsp&​nbsp $$n_{e}$$ 는 [유효반복수]이고&​nbsp&​nbsp $$n_{e} = \frac{lmnr}{l+m+n-2}$$ 이다.+ 단, $n_{e}$는 ​[[유효반복수]]이고 $n_{e} = \frac{lmnr}{l+m+n-2}$이다.
  
 ---- ----
   * [[실험계획법]]   * [[실험계획법]]
   * [[삼원배치법]]   * [[삼원배치법]]