meta data for this page
  •  

문서의 이전 판입니다!


삼원배치법 (모수모형) (반복있음)

데이터 구조

[요인]&nbsp&nbsp A 는 [모수인자]

[요인]&nbsp&nbsp B 는 [모수인자]

[요인]&nbsp&nbsp C 는 [모수인자]

$$ y_{ijkp} = \mu + a_{i} + b_{j} + c_{k} + (ab)_{ij} + (ac)_{ik} + (bc)_{jk} + (abc)_{ijk} + e_{ijkp} $$
 $$y_{ijkp}$$ &nbsp&nbsp : &nbsp&nbsp $$A_{i}$$ 와&nbsp&nbsp $$B_{j}$$ &nbsp&nbsp그리고&nbsp&nbsp $$C_{k}$$ 에서 얻은&nbsp&nbsp $$p$$ 번째 [측정값]
 $$\mu$$ &nbsp&nbsp : 실험전체의 [모평균]
 $$a_{i}$$ &nbsp&nbsp : &nbsp&nbsp $$A_{i}$$ 가 주는 효과
 $$b_{j}$$ &nbsp&nbsp : &nbsp&nbsp $$B_{j}$$ 가 주는 효과
 $$c_{k}$$ &nbsp&nbsp : &nbsp&nbsp $$C_{k}$$ 가 주는 효과
 $$(ab)_{ij}$$ &nbsp&nbsp : &nbsp&nbsp $$A_{i}$$ 와&nbsp&nbsp $$B_{j}$$ 의 [교호작용] 효과
 $$(ac)_{ik}$$ &nbsp&nbsp : &nbsp&nbsp $$A_{i}$$ 와&nbsp&nbsp $$C_{k}$$ 의 [교호작용] 효과
 $$(bc)_{jk}$$ &nbsp&nbsp : &nbsp&nbsp $$B_{j}$$ 와&nbsp&nbsp $$C_{k}$$ 의 [교호작용] 효과
 $$(abc)_{ijk}$$ &nbsp&nbsp : &nbsp&nbsp $$A_{i}$$ 와&nbsp&nbsp $$B_{J}$$ &nbsp&nbsp그리고&nbsp&nbsp $$C_{k}$$ 의 [교호작용] 효과
 $$e_{ijkp}$$ &nbsp&nbsp : &nbsp&nbsp $$A_{i}$$ 와&nbsp&nbsp $$B_{j}$$ &nbsp&nbsp그리고&nbsp&nbsp $$C_{k}$$ 에서 얻은&nbsp&nbsp $$p$$ 번째 [측정값]의 [오차]  ( $$e_{ijkp} \sim N(0, \sigma_{E}^{ \ 2})$$ 이고 서로 [독립])
  $$i$$ &nbsp&nbsp : 인자&nbsp&nbsp $$A$$ 의 [수준] 수&nbsp&nbsp $$( i = 1,2, \cdots ,l )$$
  $$j$$ &nbsp&nbsp : 인자&nbsp&nbsp $$B$$ 의 [수준] 수&nbsp&nbsp $$( j = 1,2, \cdots ,m )$$
  $$k$$ &nbsp&nbsp : 인자&nbsp&nbsp $$C$$ 의 [수준] 수&nbsp&nbsp $$( k = 1,2, \cdots ,n )$$
  $$p$$ &nbsp&nbsp : 실험의 [반복] 수&nbsp&nbsp $$( p = 1,2, \cdots ,r )$$

—-

자료의 구조

||<|2> [인자] B ||<|2> [인자] C |||||||| [인자] A || || A1 || A2 || || Al || |||||||||||| || ||<|10> B1 ||<|3> C1 || y1111 || y2111 || || yl111 || || || || || || || y111r || y211r || || yl11r || ||<|3> C2 || y1121 || y2121 || || yl121 || || || || || || || y112r || y212r || || yl12r || || || || || || || ||<|3> Cn || y11n1 || y21n1 || || yl1n1 || || || || || || || y11nr || y21nr || || yl1nr || ||<|10> B2 ||<|3> C1 || y1211 || y2211 || || yl211 || || || || || || || y121r || y221r || || yl21r || ||<|3> C2 || y1221 || y2221 || || yl221 || || || || || || || y122r || y222r || || yl22r || || || || || || || ||<|3> Cn || y12n1 || y22n1 || || yl2n1 || || || || || || || y12nr || y22nr || || yl2nr || |||| |||||||| || ||<|10> Bm ||<|3> C1 || y1m11 || y2m11 || || ylm11 || || || || || || || y1m1r || y2m1r || || ylm1r || ||<|3> C2 || y1m21 || y2m21 || || ylm21 || || || || || || || y1m2r || y2m2r || || ylm2r || || || || || || || ||<|3> Cn || y1mn1 || y2mn1 || || ylmn1 || || || || || || || y1mnr || y2mnr || || ylmnr ||

$$AB$$ 2원표
||<|2> [인자] $$B$$ |||||||| [인자] $$A$$ ||<|2> 합계 ||
|| $$A_{1}$$ || $$A_{2}$$ || $$\cdots$$ || $$A_{l}$$ ||
|||||||||||| ||
|| $$B_{1}$$ || $$T_{11..}$$ || $$T_{21..}$$ || $$\cdots$$ || $$T_{l1..}$$ || $$T_{.1..}$$ ||
|| $$B_{2}$$ || $$T_{12..}$$ || $$T_{22..}$$ || $$\cdots$$ || $$T_{l2..}$$ || $$T_{.2..}$$ ||
|| $$\vdots$$ || $$\vdots$$ || $$\vdots$$ || || $$\vdots$$ || $$\vdots$$ ||
|| $$B_{m}$$ || $$T_{1m..}$$ || $$T_{2m..}$$ || $$\cdots$$ || $$T_{lm..}$$ || $$T_{.m..}$$ ||
|||||||||||| ||
|| 합계 || $$T_{1...}$$ || $$T_{2...}$$ || $$\cdots$$ || $$T_{l...}$$ || $$T$$ ||
$$AC$$ 2원표
||<|2> [인자] $$C$$ |||||||| [인자] $$A$$ ||<|2> 합계 ||
|| $$A_{1}$$ || $$A_{2}$$ || $$\cdots$$ || $$A_{l}$$ ||
|||||||||||| ||
|| $$C_{1}$$ || $$T_{1.1.}$$ || $$T_{2.1.}$$ || $$\cdots$$ || $$T_{l.1.}$$ || $$T_{..1.}$$ ||
|| $$C_{2}$$ || $$T_{1.2.}$$ || $$T_{2.2.}$$ || $$\cdots$$ || $$T_{l.2.}$$ || $$T_{..2.}$$ ||
|| $$\vdots$$ || $$\vdots$$ || $$\vdots$$ || || $$\vdots$$ || $$\vdots$$ ||
|| $$C_{n}$$ || $$T_{1.n.}$$ || $$T_{2.n.}$$ || $$\cdots$$ || $$T_{l.n.}$$ || $$T_{..n.}$$ ||
|||||||||||| ||
|| 합계 || $$T_{1...}$$ || $$T_{2...}$$ || $$\cdots$$ || $$T_{l...}$$ || $$T$$ ||
$$BC$$ 2원표
||<|2> [인자] $$C$$ |||||||| [인자] $$B$$ ||<|2> 합계 ||
|| $$B_{1}$$ || $$B_{2}$$ || $$\cdots$$ || $$B_{m}$$ ||
|||||||||||| ||
|| $$C_{1}$$ || $$T_{.11.}$$ || $$T_{.21.}$$ || $$\cdots$$ || $$T_{.m1.}$$ || $$T_{..1.}$$ ||
|| $$C_{2}$$ || $$T_{.12.}$$ || $$T_{.22.}$$ || $$\cdots$$ || $$T_{.m2.}$$ || $$T_{..2.}$$ ||
|| $$\vdots$$ || $$\vdots$$ || $$\vdots$$ || || $$\vdots$$ || $$\vdots$$ ||
|| $$C_{n}$$ || $$T_{.1n.}$$ || $$T_{.2n.}$$ || $$\cdots$$ || $$T_{.mn.}$$ || $$T_{..n.}$$ ||
|||||||||||| ||
|| 합계 || $$T_{.1..}$$ || $$T_{.2..}$$ || $$\cdots$$ || $$T_{.m..}$$ || $$T$$ ||
 || $$T_{i...} = \sum_{j=1}^{m} \sum_{k=1}^{n} \sum_{p=1}^{r} y_{ijkp}$$ || $$\overline{y}_{i...} = \frac{T_{i...}}{mnr}$$ ||
 || $$T_{.j..} = \sum_{i=1}^{l} \sum_{k=1}^{n} \sum_{p=1}^{r} y_{ijkp}$$ || $$\overline{y}_{.j..} = \frac{T_{.j..}}{lnr}$$ ||
 || $$T_{..k.} = \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{p=1}^{r} y_{ijkp}$$ || $$\overline{y}_{..k.} = \frac{T_{..k.}}{lmr}$$ ||
 || $$T_{ij..} = \sum_{k=1}^{n} \sum_{p=1}^{r} y_{ijkp}$$ || $$\overline{y}_{ij..} = \frac{T_{ij..}}{nr}$$ ||
 || $$T_{i.k.} = \sum_{j=1}^{m} \sum_{p=1}^{r} y_{ijkp}$$ || $$\overline{y}_{i.k.} = \frac{T_{i.k.}}{mr}$$ ||
 || $$T_{.jk.} = \sum_{i=1}^{l} \sum_{p=1}^{r} y_{ijkp}$$ || $$\overline{y}_{.jk.} = \frac{T_{.jk.}}{lr}$$ ||
 || $$T_{ijk.} = \sum_{p=1}^{r} y_{ijkp}$$ || $$\overline{y}_{ijk.} = \frac{T_{ijk.}}{r}$$ ||
 || $$T = \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \sum_{p=1}^{r} y_{ijkp}$$ || $$\overline{\overline{y}} = \frac{T}{lmnr} = \frac{T}{N}$$ ||
 || $$N = lmnr$$ || $$CT = \frac{T^{2}}{lmnr} = \frac{T^{2}}{N}$$ ||

—-

[제곱합]

개개의 데이터&nbsp&nbsp yijkp 와 총편균&nbsp&nbsp ¯¯y 의 차이는 다음과 같이 8부분으로 나뉘어진다.

$$\begin{displaymath}\begin{split} (y_{ijkp}-\overline{\overline{y}}) &= (\overline{y}_{i...} - \overline{\overline{y}}) + (\overline{y}_{.j..} - \overline{\overline{y}}) + (\overline{y}_{..k.} - \overline{\overline{y}}) \\ &+ (\overline{y}_{ij..} - \overline{y}_{i...} - \overline{y}_{.j..} + \overline{\overline{y}}) + (\overline{y}_{i.k.} - \overline{y}_{i...} - \overline{y}_{..k.} + \overline{\overline{y}}) + (\overline{y}_{.jk.} - \overline{y}_{.j..} - \overline{y}_{..k.} + \overline{\overline{y}}) \\ &+ (y_{ijk.} - \overline{y}_{ij..} - \overline{y}_{i.k.} - \overline{y}_{.jk.} + \overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - \overline{\overline{y}}) \\ &+ (y_{ijkp}-\overline{y}_{ijk.}) \end{split}\end{displaymath}$$

양변을 제곱한 후에 모든&nbsp&nbsp i, j, k, p 에 대하여 합하면 아래의 등식을 얻을 수 있다.

$$\begin{displaymath}\begin{split} \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i...} - \overline{\overline{y}})^{2} + \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.j..} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{..k.} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..} - \overline{y}_{i...} - \overline{y}_{.j..} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.} - \overline{y}_{i...} - \overline{y}_{..k.} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.} - \overline{y}_{.j..} - \overline{y}_{..k.} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.} - \overline{y}_{ij..} - \overline{y}_{i.k.} - \overline{y}_{.jk.} + \overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{y}_{ijk.})^{2} \end{split}\end{displaymath}$$

위 식에서 왼쪽 항은 총변동 ST 이고, 오른쪽 항은 차례대로&nbsp&nbsp A 의 [변동],&nbsp&nbsp B 의 [변동],&nbsp&nbsp C 의 [변동],&nbsp&nbsp A, B 의 [교호작용]의 변동,&nbsp&nbsp A, C 의 [교호작용]의 변동,&nbsp&nbsp B, C 의 [교호작용]의 변동,&nbsp&nbsp A, B, C 의 [교호작용]의 변동, [오차변동]인&nbsp&nbsp SA , SB , SC , SA×B , SA×C , SB×C , SA×B×C , SE 가 된다.

$$\begin{displaymath}\begin{split} S_{T} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}y_{ijkp}^{ \ 2} - CT \end{split}\end{displaymath}$$
$$\begin{displaymath}\begin{split} S_{A} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{i...}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\frac{T_{i...}^{ \ 2}}{mnr}-CT \end{split}\end{displaymath}$$
$$\begin{displaymath}\begin{split} S_{B} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{.j..}-\overline{\overline{y}})^{2} \\ &= \sum_{j=1}^{m}\frac{T_{.j..}^{ \ 2}}{lnr}-CT \end{split}\end{displaymath}$$
$$\begin{displaymath}\begin{split} S_{C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{..k.}-\overline{\overline{y}})^{2} \\ &= \sum_{k=1}^{n}\frac{T_{..k.}^{ \ 2}}{lmr}-CT \end{split}\end{displaymath}$$
$$\begin{displaymath}\begin{split} S_{A \times B} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..}-\overline{y}_{i...}-\overline{y}_{.j..}+\overline{\overline{y}})^{2} \\ &= S_{AB} - S_{A} - S_{B} \end{split}\end{displaymath}$$
$$\begin{displaymath}\begin{split} S_{AB} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m} \frac{T_{ij..}^{ \ 2}}{nr} -CT \end{split}\end{displaymath}$$
$$\begin{displaymath}\begin{split} S_{A \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.}-\overline{y}_{i...}-\overline{y}_{..k.}+\overline{\overline{y}})^{2} \\ &= S_{AC} - S_{A} - S_{C} \end{split}\end{displaymath}$$
$$\begin{displaymath}\begin{split} S_{AC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{k=1}^{n} \frac{T_{i.k.}^{ \ 2}}{mr} -CT \end{split}\end{displaymath}$$
$$\begin{displaymath}\begin{split} S_{B \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.}-\overline{y}_{.j..}-\overline{y}_{..k.}+\overline{\overline{y}})^{2} \\ &= S_{BC} - S_{B} - S_{C} \end{split}\end{displaymath}$$
$$\begin{displaymath}\begin{split} S_{BC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.}-\overline{\overline{y}})^{2} \\ &= \sum_{j=1}^{m}\sum_{k=1}^{n} \frac{T_{.jk.}^{ \ 2}}{lr} -CT \end{split}\end{displaymath}$$
$$\begin{displaymath}\begin{split} S_{A \times B \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.}-\overline{y}_{ij..}-\overline{y}_{i.k.}-\overline{y}_{.jk.}+\overline{y}_{i...}+\overline{y}_{.j..}+\overline{y}_{..k.}-\overline{\overline{y}})^{2} \\ &= S_{ABC}-(S_{A}+S_{B}+S_{C}+S_{A \times B}+S_{A \times C}+S_{B \times C}) \end{split}\end{displaymath}$$
$$\begin{displaymath}\begin{split} S_{ABC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\frac{T_{ijk.}^{ \ 2}}{r} -CT \end{split}\end{displaymath}$$
$$\begin{displaymath}\begin{split} S_{E} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} \\ &= S_{T} - S_{ABC} \end{split}\end{displaymath}$$

—-

[자유도]

νA=l1

νB=m1

νC=n1

νA×B=νA×νB=(l1)(m1)

νA×C=νA×νC=(l1)(n1)

νB×C=νB×νC=(m1)(n1)

νA×B×C=νA×νB×νC=(l1)(m1)(n1)

νE=νT(νA+νB+νC+νA×B+νA×C+νB×C+νA×B×C)=lmn(r1)

νT=lmnr1=N1


[평균제곱]

VA=SAνA

VB=SBνB

VC=SCνC

VA×B=SA×BνA×B

VA×C=SA×CνA×C

VB×C=SB×CνB×C

VA×B×C=SA×B×CνA×B×C

VE=SEνE


[평균제곱의 기대값]

E(VA)=σ 2E+mnrσ 2A

E(VB)=σ 2E+lnrσ 2B

E(VC)=σ 2E+lmrσ 2C

E(VA×B)=σ 2E+nrσ 2A×B

E(VA×C)=σ 2E+mrσ 2A×C

E(VB×C)=σ 2E+lrσ 2A×B

E(VA×B×C)=σ 2E+rσ 2A×B×C

E(VE)=σ 2E


분산분석표

|| '[요인]' || '[제곱합]' SS || '[자유도]' DF || '[평균제곱]' MS || E(MS) || F0 || '기각치' || '[순변동]' S´ || '[기여율]' \rho || |||||||||||||||||| || || A || S_{_{A}} || \nu_{_{A}}=l-1 || V_{_{A}}=S_{_{A}}/\nu_{_{A}} || \sigma_{_{E}}^{ \ 2}+mnr \ \sigma_{_{A}}^{2} || V_{_{A}}/V_{_{E}} || F_{1-\alpha}(\nu_{_{A}} \ , \ \nu_{_{E}}) || S_{_{A}}\acute{} || S_{_{A}}\acute{}/S_{_{T}} || || B || S_{_{B}} || \nu_{_{B}}=m-1 || V_{_{B}}=S_{_{B}}/\nu_{_{B}} || \sigma_{_{E}}^{ \ 2}+lnr \ \sigma_{_{B}}^{2} || V_{_{B}}/V_{_{E}} || F_{1-\alpha}(\nu_{_{B}} \ , \ \nu_{_{E}}) || S_{_{B}}\acute{} || S_{_{B}}\acute{}/S_{_{T}} || || C || S_{_{C}} || \nu_{_{C}}=n-1 || V_{_{C}}=S_{_{C}}/\nu_{_{C}} || \sigma_{_{E}}^{ \ 2}+lmr \ \sigma_{_{C}}^{2} || V_{_{C}}/V_{_{E}} || F_{1-\alpha}(\nu_{_{C}} \ , \ \nu_{_{E}}) || S_{_{C}}\acute{} || S_{_{C}}\acute{}/S_{_{T}} || || A \times B || S_{_{A \times B}} || \nu_{_{A \times B}}=(l-1)(m-1) || V_{_{A \times B}}=S_{_{A \times B}}/\nu_{_{A \times B}} || \sigma_{_{E}}^{ \ 2}+nr \ \sigma_{_{A \times B}}^{2} || V_{_{A \times B}}/V_{_{E}} || F_{1-\alpha}(\nu_{_{A \times B}} \ , \ \nu_{_{E}}) || S_{_{A \times B}}\acute{} || S_{_{A \times B}}\acute{}/S_{_{T}} || || A \times C || S_{_{A \times C}} || \nu_{_{A \times C}}=(l-1)(n-1) || V_{_{A \times C}}=S_{_{A \times C}}/\nu_{_{A \times C}} || \sigma_{_{E}}^{ \ 2}+mr \ \sigma_{_{A \times C}}^{2} || V_{_{A \times C}}/V_{_{E}} || F_{1-\alpha}(\nu_{_{A \times C}} \ , \ \nu_{_{E}}) || S_{_{A \times C}}\acute{} || S_{_{A \times C}}\acute{}/S_{_{T}} || || B \times C || S_{_{B \times C}} || \nu_{_{B \times C}}=(m-1)(n-1) || V_{_{B \times C}}=S_{_{B \times C}}/\nu_{_{B \times C}} || \sigma_{_{E}}^{ \ 2}+lr \ \sigma_{_{B \times C}}^{2} || V_{_{B \times C}}/V_{_{E}} || F_{1-\alpha}(\nu_{_{B \times C}} \ , \ \nu_{_{E}}) || S_{_{B \times C}}\acute{} || S_{_{B \times C}}\acute{}/S_{_{T}} || || A \times B \times C || S_{_{A \times B \times C}} || \nu_{_{A \times B \times C}}=(l-1)(m-1)(n-1) || V_{_{A \times B \times C}}=S_{_{A \times B \times C}}/\nu_{_{A \times B \times C}} || \sigma_{_{E}}^{ \ 2}+r \ \sigma_{_{A \times B \times C}}^{ \ 2} || V_{_{A \times B \times C}}/V_{_{E}} || F_{1-\alpha}(\nu_{_{A \times B \times C}} \ , \ \nu_{_{E}}) || S_{_{A \times B \times C}}\acute{} || S_{_{A \times B \times C}}\acute{}/S_{_{T}} || || E || S_{_{E}} || \nu_{_{E}}=lmn(r-1) || V_{_{E}}=S_{_{E}}/\nu_{_{E}} || \sigma_{_{E}}^{ \ 2} || || || S_{_{E}}\acute{} || S_{_{E}}\acute{}/S_{_{T}} || |||||||||||||||||| || || T || S_{_{T}} || \nu_{_{T}}=lmnr-1 || || || || || S_{_{T}} || 1 ||


[분산분석]

인자&nbsp&nbsp A 에 대한 [분산분석]

$$F_{0}=\frac{V_{_{A}}}{V_{_{E}}}$$
[기각역] :&nbsp&nbsp $$F_{0} > F_{1-\alpha}(\nu_{_{A}},\nu_{_{E}})$$

—- 인자&nbsp&nbsp B 에 대한 [분산분석]

$$F_{0}=\frac{V_{_{B}}}{V_{_{E}}}$$
[기각역] :&nbsp&nbsp $$F_{0} > F_{1-\alpha}(\nu_{_{B}},\nu_{_{E}})$$

—- 인자&nbsp&nbsp C 에 대한 [분산분석]

$$F_{0}=\frac{V_{_{C}}}{V_{_{E}}}$$
[기각역] :&nbsp&nbsp $$F_{0} > F_{1-\alpha}(\nu_{_{C}},\nu_{_{E}})$$

—- 인자&nbsp&nbsp A , \ B 의 [교호작용] 대한 [분산분석]

$$F_{0}=\frac{V_{_{A \times B}}}{V_{E}}$$
[기각역] :&nbsp&nbsp $$F_{0} > F_{1-\alpha}(\nu_{_{A \times B}},\nu_{_{E}})$$

—- 인자&nbsp&nbsp A , \ C 의 [교호작용] 대한 [분산분석]

$$F_{0}=\frac{V_{_{A \times C}}}{V_{E}}$$
[기각역] :&nbsp&nbsp $$F_{0} > F_{1-\alpha}(\nu_{_{A \times C}},\nu_{_{E}})$$

—- 인자&nbsp&nbsp B , \ C 의 [교호작용] 대한 [분산분석]

$$F_{0}=\frac{V_{B \times C}}{V_{E}}$$
[기각역] :&nbsp&nbsp $$F_{0} > F_{1-\alpha}(\nu_{_{B \times C}},\nu_{_{E}})$$

—- 인자&nbsp&nbsp A , \ B , \ C 의 [교호작용] 대한 [분산분석]

$$F_{0}=\frac{V_{A \times B \times C}}{V_{E}}}$$
[기각역] :&nbsp&nbsp $$F_{0} > F_{1-\alpha}(\nu_{A \times B \times C},\nu_{_{E}})$$

—-

각 [수준]의 [모평균]의 [추정] (주효과만이 유의한 경우)

주효과인 인자&nbsp A, B, C 만이 유의한 경우 [교호작용]들이 모두 오차항에 [풀링]되어 버린다.

(단,&nbsp&nbsp S_{E}\acute{}=S_{E}+S_{A \times B}+S_{A \times C}+S_{B \times C}+S_{A \times B \times C}, \ \nu_{E}\acute{}=\nu_{E}+\nu_{A \times B}+\nu_{A \times C}+\nu_{B \times C}+\nu_{A \times B \times C}, \ V_{E}\acute{}=S_{E}\acute{}/\nu_{E}\acute{} 이다.)

* '[인자]&nbsp&nbsp $$A$$ 의 [모평균]에 관한 [추정]'

$$i$$ [수준]에서의 [모평균]&nbsp&nbsp $$\mu(A_{i})$$ 의 [점추정]값
 $$\hat{\mu}(A_{i})=\widehat{\mu + a_{i}} = \overline{y}_{i...}$$
$$i$$ [수준]에서의 [모평균]&nbsp&nbsp $$\mu(A_{i})$$ 의&nbsp&nbsp $$100(1-\alpha) \% $$ [신뢰구간]은 아래와 같다.
 $$\hat{\mu}(A_{i})= \left( \overline{y}_{i...} - t_{\alpha/2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{mnr}} \ , \ \overline{y}_{i...} + t_{\alpha/2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{mnr}} \right)$$

—- * '[인자]&nbsp&nbsp $$B$$ 의 [모평균]에 관한 [추정]'

$$j$$ [수준]에서의 [모평균]&nbsp&nbsp $$\mu(B_{j})$$ 의 [점추정]값
 $$\hat{\mu}(B_{j})=\widehat{\mu + b_{j}} = \overline{y}_{.j..}$$
$$j$$ [수준]에서의 [모평균]&nbsp&nbsp $$\mu(B_{j})$$ 의&nbsp&nbsp $$100(1-\alpha) \% $$ [신뢰구간]은 아래와 같다.
 $$\hat{\mu}(B_{j})= \left( \overline{y}_{.j..} - t_{\alpha/2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{lnr}} \ , \ \overline{y}_{.j..} + t_{\alpha/2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{lnr}} \right)$$

—- * '[인자]&nbsp&nbsp $$C$$ 의 [모평균]에 관한 [추정]'

$$k$$ [수준]에서의 [모평균]&nbsp&nbsp $$\mu(C_{k})$$ 의 [점추정]값
 $$\hat{\mu}(C_{k})=\widehat{\mu + c_{k}} = \overline{y}_{..k.}$$
$$k$$ [수준]에서의 [모평균]&nbsp&nbsp $$\mu(C_{k})$$ 의&nbsp&nbsp $$100(1-\alpha) \% $$ [신뢰구간]은 아래와 같다.
 $$\hat{\mu}(C_{k})= \left( \overline{y}_{..k.} - t_{\alpha/2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{lmr}} \ , \ \overline{y}_{..k.} + t_{\alpha/2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{lmr}} \right)$$

—- * '[인자]&nbsp&nbsp $$A$$ 와&nbsp&nbsp $$B$$ &nbsp&nbsp그리고&nbsp&nbsp $$C$$ 의 [모평균]에 관한 [추정]'

$$A$$ [인자]의&nbsp&nbsp $$i$$ [수준]과&nbsp&nbsp $$B$$ [인자]의&nbsp&nbsp $$j$$ [수준],&nbsp&nbsp $$C$$ [인자]의&nbsp&nbsp $$k$$ [수준]에서의 [모평균]&nbsp&nbsp $$\mu(A_{i}B_{j}C_{k})$$ 의 [점추정]값
 $$\hat{\mu}(A_{i}B_{j}C_{k})=\widehat{\mu+a_{i}+b_{j}+c_{k}}=\overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - 2 \overline{\overline{y}}$$
$$A$$ [인자]의&nbsp&nbsp $$i$$ [수준]과&nbsp&nbsp $$B$$ [인자]의&nbsp&nbsp $$j$$ [수준],&nbsp&nbsp $$C$$ [인자]의&nbsp&nbsp $$k$$ [수준]에서의 [모평균]&nbsp&nbsp $$\mu(A_{i}B_{j}C_{k})$$ 의&nbsp&nbsp $$100(1-\alpha) \% $$ [신뢰구간]은 아래와 같다.
 $$\hat{\mu}(A_{i}B_{j}C_{k})= \left( (\overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - 2\overline{\overline{y}}) - t_{\alpha/2}(\nu_{E}\acute{} \ )\sqrt{\frac{V_{E}\acute{}}{n_{e}}} \ , \ (\overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - 2\overline{\overline{y}}) - t_{\alpha/2}(\nu_{E}\acute{} \ )\sqrt{\frac{V_{E}\acute{}}{n_{e}}} \right)$$
 단,&nbsp&nbsp $$n_{e}$$ 는 [유효반복수]이고&nbsp&nbsp $$n_{e} = \frac{lmnr}{l+m+n-2}$$ 이다.