meta data for this page
  •  

차이

문서의 선택한 두 판 사이의 차이를 보여줍니다.

차이 보기로 링크

양쪽 이전 판 이전 판
다음 판
이전 판
삼원배치법_모수모형_반복없음 [2012/07/25 10:08]
moonrepeat [각 수준의 모평균의 추정 (주효과만이 유의한 경우)]
삼원배치법_모수모형_반복없음 [2021/03/10 21:42] (현재)
줄 23: 줄 23:
   * $k$  : [[인자]] $C$ 의 [[수준]] 수 $( k = 1,2, \cdots ,n )$   * $k$  : [[인자]] $C$ 의 [[수준]] 수 $( k = 1,2, \cdots ,n )$
 ===== 자료의 구조 ===== ===== 자료의 구조 =====
- ||<​|2> ​[인자] ​$$B$$ ||<​|2> ​[인자] ​$$C$$ |||||||| ​[인자] ​$$A$|| + [[인자]]\\ $B$  ​^ ​ [[인자]]\\ $C$  ​^ ​ [[인자]$A$  ||||  
- || $$A_{1}$$ ​|| $$A_{2}$$ ​|| $$\cdots$$ ​|| $$A_{l}$$ ​|+^:::​^:::​^  ​$$A_{1}$$ ​ ​^  ​$$A_{2}$$ ​ ​^  ​$$\cdots$$ ​ ​^  ​$$A_{l}$$ ​ |  
- |||||||||||| || +^  ​$$B_{1}$$ ​ ​^  ​$$C_{1}$$ ​  $$y_{111}$$ ​  $$y_{211}$$ ​  $$\cdots$$ ​  $$y_{l11}$$ ​ |  
- ​||<​|4> ​$$B_{1}$$ ​|| $$C_{1}$$ |$$y_{111}$$ |$$y_{211}$$ |$$\cdots$$ |$$y_{l11}$$ ​|+^:::​^  ​$$C_{2}$$ ​  $$y_{112}$$ ​  $$y_{212}$$ ​  $$\cdots$$ ​  $$y_{l12}$$ ​ |  
- || $$C_{2}$$ |$$y_{112}$$ |$$y_{212}$$ |$$\cdots$$ |$$y_{l12}$$ ​|+^:::​^  ​$$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​   ​ $$\vdots$$ ​ |  
- || $$\vdots$$ |$$\vdots$$ |$$\vdots$$ || || $$\vdots$$ ​|+^:::​^  ​$$C_{n}$$ ​  $$y_{11n}$$ ​  $$y_{21n}$$ ​  $$\cdots$$ ​  $$y_{l1n}$$ ​ |  
- || $$C_{n}$$ |$$y_{11n}$$ |$$y_{21n}$$ |$$\cdots$$ |$$y_{l1n}$$ ​|+^  ​$$B_{2}$$ ​ ​^  ​$$C_{1}$$ ​  $$y_{121}$$ ​  $$y_{221}$$ ​  $$\cdots$$ ​  $$y_{l21}$$ ​ |  
- ||<​|4> ​$$B_{2}$$ ​|| $$C_{1}$$ |$$y_{121}$$ |$$y_{221}$$ |$$\cdots$$ |$$y_{l21}$$ ​|+^:::​^  ​$$C_{2}$$ ​  $$y_{122}$$ ​  $$y_{222}$$ ​  $$\cdots$$ ​  $$y_{l22}$$ ​ |  
- || $$C_{2}$$ |$$y_{122}$$ |$$y_{222}$$ |$$\cdots$$ |$$y_{l22}$$ ​|+^:::​^  ​$$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​   ​ $$\vdots$$ ​ |  
- || $$\vdots$$ |$$\vdots$$ |$$\vdots$$ || || $$\vdots$$ ​|+^:::​^  ​$$C_{n}$$ ​  $$y_{12n}$$ ​  $$y_{22n}$$ ​  $$\cdots$$ ​  $$y_{l2n}$$ ​ |  
- || $$C_{n}$$ |$$y_{12n}$$ |$$y_{22n}$$ |$$\cdots$$ |$$y_{l2n}$$ ​|+^  ​$$\vdots$$ ​ ||  $$\vdots$$ ​ ||||  
- |||| $$\vdots$$ |||||||| ​$$\vdots$$ || +^  ​$$B_{m}$$ ​ ​^  ​$$C_{1}$$ ​  $$y_{1m1}$$ ​  $$y_{2m1}$$ ​  $$\cdots$$ ​  $$y_{lm1}$$ ​ |  
- ||<​|4> ​$$B_{m}$$ ​|| $$C_{1}$$ |$$y_{1m1}$$ |$$y_{2m1}$$ |$$\cdots$$ |$$y_{lm1}$$ ​|+^:::​^  ​$$C_{2}$$ ​  $$y_{1m2}$$ ​  $$y_{2m2}$$ ​  $$\cdots$$ ​  $$y_{lm2}$$ ​ |  
- || $$C_{2}$$ |$$y_{1m2}$$ |$$y_{2m2}$$ |$$\cdots$$ |$$y_{lm2}$$ ​|+^:::​^  ​$$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​   ​ $$\vdots$$ ​ |  
- || $$\vdots$$ |$$\vdots$$ |$$\vdots$$ || || $$\vdots$$ ​|+^:::​^  ​$$C_{n}$$ ​  $$y_{1mn}$$ ​  $$y_{2mn}$$ ​  $$\cdots$$ ​  $$y_{lmn}$$ ​ 
- || $$C_{n}$$ |$$y_{1mn}$$ |$$y_{2mn}$$ |$$\cdots$$ |$$y_{lmn}$$ ​||+
  
-  $$AB$$ 2원표 + $AB$ 2원표 
-  ​||<​|2> ​[인자] ​$$B$$ |||||||| ​[인자] ​$$A$$ ||<​|2> ​합계 ​|+ [[인자]]\\ $B$  ​^ ​ [[인자]$A$  ​^^^^  ​합계 ​ |  
-  ​|| $$A_{1}$$ ​|| $$A_{2}$$ ​|| $$\cdots$$ ​|| $$A_{l}$$ ​|+^:::^  ​$$A_{1}$$ ​ ​^  ​$$A_{2}$$ ​ ​^  ​$$\cdots$$ ​ ​^  ​$$A_{l}$$ ​ ^:::|  
-  |||||||||||| || +|  $$B_{1}$$ ​  $$T_{11.}$$ ​  $$T_{21.}$$ ​  $$\cdots$$ ​  $$T_{l1.}$$ ​  $$T_{.1.}$$ ​  
-  || $$B_{1}$$ |$$T_{11.}$$ |$$T_{21.}$$ |$$\cdots$$ |$$T_{l1.}$$ |$$T_{.1.}$$ || +|  $$B_{2}$$ ​  $$T_{12.}$$ ​  $$T_{22.}$$ ​  $$\cdots$$ ​  $$T_{l2.}$$ ​  $$T_{.2.}$$ ​ |  
-  || $$B_{2}$$ |$$T_{12.}$$ |$$T_{22.}$$ |$$\cdots$$ |$$T_{l2.}$$ |$$T_{.2.}$$ ​|+ ​$$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​   ​ $$\vdots$$ ​  $$\vdots$$ ​ |  
-  ​|| $$\vdots$$ |$$\vdots$$ |$$\vdots$$ || || $$\vdots$$ |$$\vdots$$ ​|+ $$B_{m}$$ ​  $$T_{1m.}$$ ​  $$T_{2m.}$$ ​  $$\cdots$$ ​  $$T_{lm.}$$ ​  $$T_{.m.}$$ ​ |  
-  || $$B_{m}$$ |$$T_{1m.}$$ |$$T_{2m.}$$ |$$\cdots$$ |$$T_{lm.}$$ |$$T_{.m.}$$ ​|| + ​합계 ​ ​^  ​$$T_{1..}$$ ​ ​^  ​$$T_{2..}$$ ​ ​^  ​$$\cdots$$ ​ ​^  ​$$T_{l..}$$ ​ ​^  ​$$T$$  
-  |||||||||||| |+
-  ​|| 합계 ​|| $$T_{1..}$$ ​|| $$T_{2..}$$ ​|| $$\cdots$$ ​|| $$T_{l..}$$ ​|| $$T$$ ||+
  
-  $$AC$$ 2원표 + $AC$ 2원표 
-  ​||<​|2> ​[인자] ​$$C$$ |||||||| ​[인자] ​$$A$$ ||<​|2> ​합계 ​|+ [[인자]]\\ $C$  ​^ ​ [[인자]$A$  ​^^^^  ​합계 ​ |  
-  ​|| $$A_{1}$$ ​|| $$A_{2}$$ ​|| $$\cdots$$ ​|| $$A_{l}$$ ​|+^:::^  ​$$A_{1}$$ ​ ​^  ​$$A_{2}$$ ​ ​^  ​$$\cdots$$ ​ ​^  ​$$A_{l}$$ ​ ^:::|  
-  |||||||||||| || +|  $$C_{1}$$ ​  $$T_{1.1}$$ ​  $$T_{2.1}$$ ​  $$\cdots$$ ​  $$T_{l.1}$$ ​  $$T_{..1}$$ ​  
-  || $$C_{1}$$ |$$T_{1.1}$$ |$$T_{2.1}$$ |$$\cdots$$ |$$T_{l.1}$$ |$$T_{..1}$$ || +|  $$C_{2}$$ ​  $$T_{1.2}$$ ​  $$T_{2.2}$$ ​  $$\cdots$$ ​  $$T_{l.2}$$ ​  $$T_{..2}$$ ​ |  
-  || $$C_{2}$$ |$$T_{1.2}$$ |$$T_{2.2}$$ |$$\cdots$$ |$$T_{l.2}$$ |$$T_{..2}$$ ​|+ ​$$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​   ​ $$\vdots$$ ​  $$\vdots$$ ​ |  
-  ​|| $$\vdots$$ |$$\vdots$$ |$$\vdots$$ || || $$\vdots$$ |$$\vdots$$ ​|+ $$C_{n}$$ ​  $$T_{1.n}$$ ​  $$T_{2.n}$$ ​  $$\cdots$$ ​  $$T_{l.n}$$ ​  $$T_{..n}$$ ​ |  
-  || $$C_{n}$$ |$$T_{1.n}$$ |$$T_{2.n}$$ |$$\cdots$$ |$$T_{l.n}$$ |$$T_{..n}$$ ​|| + ​합계 ​ ​^  ​$$T_{1..}$$ ​ ​^  ​$$T_{2..}$$ ​ ​^  ​$$\cdots$$ ​ ​^  ​$$T_{l..}$$ ​ ​^  ​$$T$$  
-  |||||||||||| |+
-  ​|| 합계 ​|| $$T_{1..}$$ ​|| $$T_{2..}$$ ​|| $$\cdots$$ ​|| $$T_{l..}$$ ​|| $$T$$ ||+
  
-  $$BC$$ 2원표 + $BC$ 2원표 
-  ​||<​|2> ​[인자] ​$$C$$ |||||||| ​[인자] ​$$B$$ ||<​|2> ​합계 ​|+ [[인자]]\\ $C$  ​^ ​ [[인자]$B$  ​^^^^  ​합계 ​ 
-  ​|| $$B_{1}$$ ​|| $$B_{2}$$ ​|| $$\cdots$$ ​|| $$B_{m}$$ ​|+^:::^  ​$$B_{1}$$ ​ ​^  ​$$B_{2}$$ ​ ​^  ​$$\cdots$$ ​ ​^  ​$$B_{m}$$ ​ ^:::
-  |||||||||||| || +|  $$C_{1}$$ ​  $$T_{.11}$$ ​  $$T_{.21}$$ ​  $$\cdots$$ ​  $$T_{.m1}$$ ​  $$T_{..1}$$ ​  
-  || $$C_{1}$$ |$$T_{.11}$$ |$$T_{.21}$$ |$$\cdots$$ |$$T_{.m1}$$ |$$T_{..1}$$ || +|  $$C_{2}$$ ​  $$T_{.12}$$ ​  $$T_{.22}$$ ​  $$\cdots$$ ​  $$T_{.m2}$$ ​  $$T_{..2}$$ ​ |  
-  || $$C_{2}$$ |$$T_{.12}$$ |$$T_{.22}$$ |$$\cdots$$ |$$T_{.m2}$$ |$$T_{..2}$$ ​|+ ​$$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​   ​ $$\vdots$$ ​  $$\vdots$$ ​ |  
-  ​|| $$\vdots$$ |$$\vdots$$ |$$\vdots$$ || || $$\vdots$$ |$$\vdots$$ ​|+ $$C_{n}$$ ​  $$T_{.1n}$$ ​  $$T_{.2n}$$ ​  $$\cdots$$ ​  $$T_{.mn}$$ ​  $$T_{..n}$$ ​ |  
-  || $$C_{n}$$ |$$T_{.1n}$$ |$$T_{.2n}$$ |$$\cdots$$ |$$T_{.mn}$$ |$$T_{..n}$$ ​|| + ​합계 ​ ​^  ​$$T_{.1.}$$ ​ ​^  ​$$T_{.2.}$$ ​ ​^  ​$$\cdots$$ ​ ​^  ​$$T_{.m.}$$ ​ ​^  ​$$T$$  
-  |||||||||||| |+
-  ​|| 합계 ​|| $$T_{.1.}$$ ​|| $$T_{.2.}$$ ​|| $$\cdots$$ ​|| $$T_{.m.}$$ ​|| $$T$$ ||+
  
-   || $$T_{i..} = \sum_{j=1}^{m} \sum_{k=1}^{n} y_{ijk}$$ ​|| $$\overline{y}_{i..} = \frac{T_{i..}}{mn}$$ ​|+| $$T_{i..} = \sum_{j=1}^{m} \sum_{k=1}^{n} y_{ijk}$$ | $$\overline{y}_{i..} = \frac{T_{i..}}{mn}$$ | 
-   || $$T_{.j.} = \sum_{i=1}^{l} \sum_{k=1}^{n} y_{ijk}$$ ​|| $$\overline{y}_{.j.} = \frac{T_{.j.}}{ln}$$ ​|+| $$T_{.j.} = \sum_{i=1}^{l} \sum_{k=1}^{n} y_{ijk}$$ | $$\overline{y}_{.j.} = \frac{T_{.j.}}{ln}$$ | 
-   || $$T_{..k} = \sum_{i=1}^{l} \sum_{j=1}^{m} y_{ijk}$$ ​|| $$\overline{y}_{..k} = \frac{T_{..k}}{lm}$$ ​|+| $$T_{..k} = \sum_{i=1}^{l} \sum_{j=1}^{m} y_{ijk}$$ | $$\overline{y}_{..k} = \frac{T_{..k}}{lm}$$ | 
-   || $$T_{ij.} = \sum_{k=1}^{n} y_{ijk}$$ ​|| $$\overline{y}_{ij.} = \frac{T_{ij.}}{n}$$ ​|+| $$T_{ij.} = \sum_{k=1}^{n} y_{ijk}$$ | $$\overline{y}_{ij.} = \frac{T_{ij.}}{n}$$ | 
-   || $$T_{i.k} = \sum_{j=1}^{m} y_{ijk}$$ ​|| $$\overline{y}_{i.k} = \frac{T_{i.k}}{m}$$ ​|+| $$T_{i.k} = \sum_{j=1}^{m} y_{ijk}$$ | $$\overline{y}_{i.k} = \frac{T_{i.k}}{m}$$ | 
-   || $$T_{.jk} = \sum_{i=1}^{l} y_{ijk}$$ ​|| $$\overline{y}_{.jk} = \frac{T_{.jk}}{l}$$ ​|+| $$T_{.jk} = \sum_{i=1}^{l} y_{ijk}$$ | $$\overline{y}_{.jk} = \frac{T_{.jk}}{l}$$ | 
-   || $$T = \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} y_{ijk}$$ ​|| $$\overline{\overline{y}} = \frac{T}{lmn} = \frac{T}{N}$$ ​|+| $$T = \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} y_{ijk}$$ | $$\overline{\overline{y}} = \frac{T}{lmn} = \frac{T}{N}$$ | 
-   || $$N = lmn$$ || $$CT = \frac{T^{2}}{lmn} = \frac{T^{2}}{N}$$ ​||+| $$N = lmn$$ | $$CT = \frac{T^{2}}{lmn} = \frac{T^{2}}{N}$$ |
 ===== 제곱합 ===== ===== 제곱합 =====
- ​개개의 데이터&​nbsp&​nbsp $$y_{ijk}$$ 와 총&​nbsp&​nbsp $$\overline{\overline{y}}$$ 의 차이는 다음과 같이 7부분으로 나뉘어진다.+ ​개개의 데이터 $y_{ijk}$와 총균 $\overline{\overline{y}}$의 차이는 다음과 같이 7부분으로 나뉘어진다.
  
-  ​$$\begin{displaymath}\begin{split} (y_{ijk}-\overline{\overline{y}}) &= (\overline{y}_{i..} - \overline{\overline{y}}) + (\overline{y}_{.j.} - \overline{\overline{y}}) + (\overline{y}_{..k} - \overline{\overline{y}}) \\ &+ (\overline{y}_{ij.} - \overline{y}_{i..} - \overline{y}_{.j.} + \overline{\overline{y}}) + (\overline{y}_{i.k} - \overline{y}_{i..} - \overline{y}_{..k} + \overline{\overline{y}}) + (\overline{y}_{.jk} - \overline{y}_{.j.} - \overline{y}_{..k} + \overline{\overline{y}}) \\ &+ (y_{ijk} - \overline{y}_{ij.} - \overline{y}_{i.k} - \overline{y}_{.jk} + \overline{y}_{i..} + \overline{y}_{.j.} + \overline{y}_{..k} - \overline{\overline{y}}) \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} (y_{ijk}-\overline{\overline{y}}) &= (\overline{y}_{i..} - \overline{\overline{y}}) + (\overline{y}_{.j.} - \overline{\overline{y}}) + (\overline{y}_{..k} - \overline{\overline{y}}) \\ &+ (\overline{y}_{ij.} - \overline{y}_{i..} - \overline{y}_{.j.} + \overline{\overline{y}}) + (\overline{y}_{i.k} - \overline{y}_{i..} - \overline{y}_{..k} + \overline{\overline{y}}) + (\overline{y}_{.jk} - \overline{y}_{.j.} - \overline{y}_{..k} + \overline{\overline{y}}) \\ &+ (y_{ijk} - \overline{y}_{ij.} - \overline{y}_{i.k} - \overline{y}_{.jk} + \overline{y}_{i..} + \overline{y}_{.j.} + \overline{y}_{..k} - \overline{\overline{y}}) \end{split}\end{displaymath}$$
  
- ​양변을 제곱한 후에 모든&​nbsp&​nbsp $$i, \ j, \ k$$ 에 대하여 합하면 아래의 등식을 얻을 수 있다.+ ​양변을 제곱한 후에 모든 $i, \ j, \ k$에 대하여 합하면 아래의 등식을 얻을 수 있다.
  
-  ​$$\begin{displaymath}\begin{split} \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(y_{ijk}-\overline{\overline{y}})^{2} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{i..} - \overline{\overline{y}})^{2} + \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{.j.} - \overline{\overline{y}})^{2} + \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{..k} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{ij.} - \overline{y}_{i..} - \overline{y}_{.j.} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{i.k} - \overline{y}_{i..} - \overline{y}_{..k} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{.jk} - \overline{y}_{.j.} - \overline{y}_{..k} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(y_{ijk} - \overline{y}_{ij.} - \overline{y}_{i.k} - \overline{y}_{.jk} + \overline{y}_{i..} + \overline{y}_{.j.} + \overline{y}_{..k} - \overline{\overline{y}})^{2} \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(y_{ijk}-\overline{\overline{y}})^{2} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{i..} - \overline{\overline{y}})^{2} + \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{.j.} - \overline{\overline{y}})^{2} + \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{..k} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{ij.} - \overline{y}_{i..} - \overline{y}_{.j.} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{i.k} - \overline{y}_{i..} - \overline{y}_{..k} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{.jk} - \overline{y}_{.j.} - \overline{y}_{..k} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(y_{ijk} - \overline{y}_{ij.} - \overline{y}_{i.k} - \overline{y}_{.jk} + \overline{y}_{i..} + \overline{y}_{.j.} + \overline{y}_{..k} - \overline{\overline{y}})^{2} \end{split}\end{displaymath}$$
  
- 위 식에서 왼쪽 항은 총변동 ​$$S_{T}$$ 이고, 오른쪽 항은 차례대로&​nbsp&​nbsp $$A$$ 의 [변동],&​nbsp&​nbsp $$B$$ 의 [변동],&​nbsp&​nbsp $$C$$ 의 [변동],&​nbsp&​nbsp $$A, \ B$$ 의 [교호작용]의 변동,&​nbsp&​nbsp $$A, \ C$$ 의 [교호작용]의 변동,&​nbsp&​nbsp $$B, \ C$$ 의 [교호작용]의 변동, [오차변동]인&​nbsp&​nbsp $$S_{A}$$ , $$S_{B}$$ , $$S_{C}$$ , $$S_{A \times B}$$ , $$S_{A \times C}$$ , $$S_{B \times C}$$ , $$S_{E}$$ 가 된다.+ 위 식에서 왼쪽 항은 총변동 $S_{T}$이고,​ 오른쪽 항은 차례대로 $A$의 ​[[변동]], $B$의 ​[[변동]], $C$의 ​[[변동]], $A, \ B$의 [[교호작용]]의 변동, $A, \ C$의 [[교호작용]]의 변동, $B, \ C$의 [[교호작용]]의 변동, ​[[오차변동]]인 $S_{A}$, $S_{B}$, $S_{C}$, $S_{A \times B}$, $S_{A \times C}$, $S_{B \times C}$, $S_{E}$가 된다.
  
 + ​$$\begin{displaymath}\begin{split} S_{T} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(y_{ijk}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}y_{ijk}^{ \ 2} - CT \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{T} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(y_{ijk}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}y_{ijk}^{ \ 2} - CT \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{A} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(y_{i..}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\frac{T_{i..}^{ \ 2}}{mn}-CT \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{A} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(y_{i..}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\frac{T_{i..}^{ \ 2}}{mn}-CT \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{B} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(y_{.j.}-\overline{\overline{y}})^{2} \\ &= \sum_{j=1}^{m}\frac{T_{.j.}^{ \ 2}}{ln}-CT \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{B} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(y_{.j.}-\overline{\overline{y}})^{2} \\ &= \sum_{j=1}^{m}\frac{T_{.j.}^{ \ 2}}{ln}-CT \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(y_{..k}-\overline{\overline{y}})^{2} \\ &= \sum_{k=1}^{n}\frac{T_{..k}^{ \ 2}}{lm}-CT \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(y_{..k}-\overline{\overline{y}})^{2} \\ &​= ​\sum_{k=1}^{n}\frac{T_{..k}^{ \ 2}}{lm}-CT ​\end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{A \times B} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{ij.}-\overline{y}_{i..}-\overline{y}_{.j.}+\overline{\overline{y}})^{2} \\ &​= ​S_{AB- S_{A- S_{B} \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{A \times B} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{ij.}-\overline{y}_{i..}-\overline{y}_{.j.}+\overline{\overline{y}})^{2} \\ &S_{AB- S_{A- S_{B} \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{AB} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{ij.}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m\frac{T_{ij.}^\ 2}}{n} -CT \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{AB} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{ij.}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m} ​\frac{T_{ij.}^{ 2}}{n} -CT \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{A \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{i.k}-\overline{y}_{i..}-\overline{y}_{..k}+\overline{\overline{y}})^{2} \\ &= S_{AC- S_{A} - S_{C} \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{A \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{i.k}-\overline{y}_{i..}-\overline{y}_{..k}+\overline{\overline{y}})^{2} \\ &S_{AC- S_{A- S_{C} \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{AC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{i.k}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{k=1}^{n\frac{T_{i.k}^\ 2}}{m} -CT \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{AC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{i.k}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{k=1}^{n\frac{T_{i.k}^\ 2}}{m} -CT \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{B \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{.jk}-\overline{y}_{.j.}-\overline{y}_{..k}+\overline{\overline{y}})^{2} \\ &S_{BC- S_{B- S_{C} \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{B \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{.jk}-\overline{y}_{.j.}-\overline{y}_{..k}+\overline{\overline{y}})^{2} \\ &S_{BC- S_{B- S_{C} \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{BC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{.jk}-\overline{\overline{y}})^{2} \\ &= \sum_{j=1}^{m}\sum_{k=1}^{n\frac{T_{.jk}^\ 2}}{l} -CT \end{split}\end{displaymath}$$
  
-  $$\begin{displaymath}\begin{split} S_{BC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{.jk}-\overline{\overline{y}})^{2} \\ &= \sum_{j=1}^{m}\sum_{k=1}^{n} \frac{T_{.jk}^{ \ 2}}{l} -CT \end{split}\end{displaymath}$$ + ​$$\begin{displaymath}\begin{split} S_{E} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(y_{ijk}-\overline{y}_{ij.}-\overline{y}_{i.k}-\overline{y}_{.jk}+\overline{y}_{i..}+\overline{y}_{.j.}+\overline{y}_{..k}-\overline{\overline{y}})^{2} \\ &= S_{T}-(S_{A}+S_{B}+S_{C}+S_{A \times B}+S_{A \times C}+S_{B \times C}) \end{split}\end{displaymath}$$
- +
-  ​$$\begin{displaymath}\begin{split} S_{E} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(y_{ijk}-\overline{y}_{ij.}-\overline{y}_{i.k}-\overline{y}_{.jk}+\overline{y}_{i..}+\overline{y}_{.j.}+\overline{y}_{..k}-\overline{\overline{y}})^{2} \\ &= S_{T}-(S_{A}+S_{B}+S_{C}+S_{A \times B}+S_{A \times C}+S_{B \times C}) \end{split}\end{displaymath}$$+
 ===== 자유도 ===== ===== 자유도 =====
  ​$$\nu_{A}=l-1$$  ​$$\nu_{A}=l-1$$
줄 220: 줄 212:
  (단, $S_{E}\acute{}=S_{E}+S_{A \times B}+S_{A \times C}+S_{B \times C}, \ \nu_{E}\acute{}=\nu_{E}+\nu_{A \times B}+\nu_{A \times C}+\nu_{B \times C}, \ V_{E}\acute{}=S_{E}\acute{}/​\nu_{E}\acute{}$이다.)  (단, $S_{E}\acute{}=S_{E}+S_{A \times B}+S_{A \times C}+S_{B \times C}, \ \nu_{E}\acute{}=\nu_{E}+\nu_{A \times B}+\nu_{A \times C}+\nu_{B \times C}, \ V_{E}\acute{}=S_{E}\acute{}/​\nu_{E}\acute{}$이다.)
  
- * '''​[인자]&​nbsp&​nbsp $$A$$ 의 [모평균]에 관한 [추정]'''​+ [[인자]$A$의 ​[[모평균]]에 관한 ​[[추정]]
  
-  $$i$$ [수준]에서의 [모평균]&​nbsp&​nbsp $$\mu(A_{i})$$ 의 [점추정]값+ $i$ [[수준]]에서의 ​[[모평균]$\mu(A_{i})$의 ​[[점추정]]값
  
-   $$\hat{\mu}(A_{i})=\widehat{\mu + a_{i}} = \overline{y}_{i..}$$+ $$\hat{\mu}(A_{i})=\widehat{\mu + a_{i}} = \overline{y}_{i..}$$
  
 + $i$ [[수준]]에서의 [[모평균]] $\mu(A_{i})$의 $100(1-\alpha) \% $ [[신뢰구간]]은 아래와 같다.
  
-  $$i$$ [수준]에서의 [모평균]&​nbsp&​nbsp $$\mu(A_{i})$$ 의&​nbsp&​nbsp $$100(1-\alpha) \% $$ [신뢰구간]은 아래와 같다.+ $\hat{\mu}(A_{i})= \left\overline{y}_{i..} ​t_{\alpha/​2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{mn}} \ , \ \overline{y}_{i..} + t_{\alpha/​2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{mn}} \right)$
  
-   ​$$\hat{\mu}(A_{i})= \left( \overline{y}_{i..} - t_{\alpha/​2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{mn}} \ , \ \overline{y}_{i..} + t_{\alpha/​2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{mn}} \right)$$ 
 ---- ----
- * '''​[인자]&​nbsp&​nbsp $$B$$ 의 [모평균]에 관한 [추정]'''​+ [[인자]$B$의 ​[[모평균]]에 관한 ​[[추정]]
  
-  $$j$$ [수준]에서의 [모평균]&​nbsp&​nbsp $$\mu(B_{j})$$ 의 [점추정]값+ $j$ [[수준]]에서의 ​[[모평균]$\mu(B_{j})$의 ​[[점추정]]값
  
-   $$\hat{\mu}(B_{j})=\widehat{\mu + b_{j}} = \overline{y}_{.j.}$$+ $\hat{\mu}(B_{j})=\widehat{\mu + b_{j}} = \overline{y}_{.j.}$
  
 + $j$ [[수준]]에서의 [[모평균]] $\mu(B_{j})$의 $100(1-\alpha) \% $ [[신뢰구간]]은 아래와 같다.
  
-  $$j$$ [수준]에서의 [모평균]&​nbsp&​nbsp $$\mu(B_{j})$$ 의&​nbsp&​nbsp $$100(1-\alpha) \% $$ [신뢰구간]은 아래와 같다.+ $\hat{\mu}(B_{j})= \left\overline{y}_{.j.} ​t_{\alpha/​2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{ln}} \ , \ \overline{y}_{.j.} + t_{\alpha/​2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{ln}} \right)$
  
-   ​$$\hat{\mu}(B_{j})= \left( \overline{y}_{.j.} - t_{\alpha/​2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{ln}} \ , \ \overline{y}_{.j.} + t_{\alpha/​2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{ln}} \right)$$ 
 ---- ----
- * '''​[인자]&​nbsp&​nbsp $$C$$ 의 [모평균]에 관한 [추정]'''​+ [[인자]$C$의 ​[[모평균]]에 관한 ​[[추정]]
  
-  $$k$$ [수준]에서의 [모평균]&​nbsp&​nbsp $$\mu(C_{k})$$ 의 [점추정]값+ $k$ [[수준]]에서의 ​[[모평균]$\mu(C_{k})$의 ​[[점추정]]값
  
-   $$\hat{\mu}(C_{k})=\widehat{\mu + c_{k}} = \overline{y}_{..k}$$+ $$\hat{\mu}(C_{k})=\widehat{\mu + c_{k}} = \overline{y}_{..k}$$
  
 + $k$ [[수준]]에서의 [[모평균]] $\mu(C_{k})$의 $100(1-\alpha) \% $ [[신뢰구간]]은 아래와 같다.
  
-  $$k$$ [수준]에서의 [모평균]&​nbsp&​nbsp ​$$\mu(C_{k})$$ 의&​nbsp&​nbsp $$100(1-\alpha) \$$ [신뢰구간]은 아래와 같다.+ $$\hat{\mu}(C_{k})= \left\overline{y}_{..k} ​t_{\alpha/​2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{lm}} \ , \ \overline{y}_{..k} + t_{\alpha/​2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{lm}} \right)$$
  
-   ​$$\hat{\mu}(C_{k})= \left( \overline{y}_{..k} - t_{\alpha/​2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{lm}} \ , \ \overline{y}_{..k} + t_{\alpha/​2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{lm}} \right)$$ 
 ---- ----
- * '''​[인자]&​nbsp&​nbsp $$A$$ 와&​nbsp&​nbsp $$B$$ &​nbsp&​nbsp그리고&​nbsp&​nbsp $$C$$ 의 [모평균]에 관한 [추정]'''​ + [[인자]$A$와 $B$ 그리고 $C$의 ​[[모평균]]에 관한 ​[[추정]]
- +
-  $$A$$ [인자]의&​nbsp&​nbsp $$i$$ [수준]과&​nbsp&​nbsp $$B$$ [인자]의&​nbsp&​nbsp $$j$$ [수준],&​nbsp&​nbsp $$C$$ [인자]의&​nbsp&​nbsp $$k$$ [수준]에서의 [모평균]&​nbsp&​nbsp $$\mu(A_{i}B_{j}C_{k})$$ 의 [점추정]+
  
-   $$\hat{\mu}(A_{i}B_{j}C_{k})=\widehat{\mu+a_{i}+b_{j}+c_{k}}=\overline{y}_{i..} + \overline{y}_{.j.} + \overline{y}_{..k} - 2 \overline{\overline{y}}$$+ $A$ [[인자]]의 $i$ [[수준]]과 $B$ [[인자]]의 $j$ [[수준]], $C$ [[인자]]의 $k$ [[수준]]에서의 [[모평균]] ​$\mu(A_{i}B_{j}C_{k})$의 [[점추정]]값
  
 + ​$\hat{\mu}(A_{i}B_{j}C_{k})=\widehat{\mu+a_{i}+b_{j}+c_{k}}=\overline{y}_{i..} + \overline{y}_{.j.} + \overline{y}_{..k} - 2 \overline{\overline{y}}$
  
-  $$A$[인자]의&​nbsp&​nbsp $$i$[수준]과&​nbsp&​nbsp $$B$[인자]의&​nbsp&​nbsp $$j$$ [수준],&​nbsp&​nbsp $$C$[인자]의&​nbsp&​nbsp $$k$[수준]에서의 [모평균]&​nbsp&​nbsp $$\mu(A_{i}B_{j}C_{k})$$ 의&​nbsp&​nbsp $$100(1-\alpha) \% $$ [신뢰구간]은 아래와 같다.+ $A$ [[인자]]의 $i$ [[수준]]과 $B$ [[인자]]의 $j$ [[수준]], $C$ [[인자]]의 $k$ [[수준]]에서의 ​[[모평균]$\mu(A_{i}B_{j}C_{k})$$ 의&​nbsp&​nbsp $$100(1-\alpha) \% $ [[신뢰구간]]은 아래와 같다.
  
-   $$\hat{\mu}(A_{i}B_{j}C_{k})= \left( (\overline{y}_{i..} + \overline{y}_{.j.} + \overline{y}_{..k} - 2\overline{\overline{y}}) - t_{\alpha/​2}(\nu_{E}\acute{} \ )\sqrt{\frac{V_{E}\acute{}}{n_{e}}} \ , \ (\overline{y}_{i..} + \overline{y}_{.j.} + \overline{y}_{..k} - 2\overline{\overline{y}}) - t_{\alpha/​2}(\nu_{E}\acute{} \ )\sqrt{\frac{V_{E}\acute{}}{n_{e}}} \right)$$+ $\hat{\mu}(A_{i}B_{j}C_{k})= \left( (\overline{y}_{i..} + \overline{y}_{.j.} + \overline{y}_{..k} - 2\overline{\overline{y}}) - t_{\alpha/​2}(\nu_{E}\acute{} \ )\sqrt{\frac{V_{E}\acute{}}{n_{e}}} \ , \ (\overline{y}_{i..} + \overline{y}_{.j.} + \overline{y}_{..k} - 2\overline{\overline{y}}) - t_{\alpha/​2}(\nu_{E}\acute{} \ )\sqrt{\frac{V_{E}\acute{}}{n_{e}}} \right)$
  
-   단,&​nbsp&​nbsp $$n_{e}$$ 는 [유효반복수]이고&​nbsp&​nbsp $$n_{e} = \frac{lmn}{l+m+n-2}$$ 이다.+ 단, $n_{e}$는 ​[[유효반복수]]이고 $n_{e} = \frac{lmn}{l+m+n-2}$이다.
  
 ---- ----
   * [[실험계획법]]   * [[실험계획법]]
   * [[삼원배치법]]   * [[삼원배치법]]