====== 이항분포 (Binomial Distribution) ====== ===== 정의 ===== 성공률이 $p$인 [[베르누이 시행]]을 [[독립]]적으로 $n$번 반복할 때 성공횟수를 $X$라 하면. $X$는 [[모수]]가 $n$과 $p$인 [[이항분포]]를 따른다. ===== 표기 ===== 이항분포는 [[베르누이 실험]]의 연속적인 시행횟수 $n$과 그 실험의 성공 확률인 $p$를 이용해 표기 한다. * $$ X \sim b(n , p)$$ * $$ n \in \{ \ 1 \ , \ 2 \ , \ \cdots \ \} $$ * $$ p \in [[ \ 0 \ , \ 1 \ ]] $$ ===== 받침 ===== $$ x \in \{ \ 0 \ , \ 1 \ , \ ... \ , \ n \} $$ ===== 확률질량함수 ===== $$ p(x)=\begin{pmatrix}n\\x\end{pmatrix}p^{x}(1-p)^{n-x} $$ set title "Binomial Distribution PMF (1)" set size 1.0 set yrange [0:0.3] set xrange [0:20.5] set format y "%.2f" set xlabel "x" set ylabel "p(x)" set key f(x,n,p) = (n!)/((int(x)!)*((n-int(x))!))*(p**(int(x)))*((1-p)**(n-int(x))) plot f(x+0.5,20,0.1) title "b(20,0.1)" with steps, \ f(x+0.5,20,0.5) title "b(20,0.5)" with steps, \ f(x+0.5,20,0.9) title "b(20,0.9)" with steps set title "Binomial Distribution PMF (2)" set size 1.0 set yrange [0:0.09] set xrange [0:100.5] set boxwidth 1 set format y "%.2f" set xlabel "x" set ylabel "p(x)" f(x,n,p) = (n!)/((int(x)!)*((n-int(x))!))*(p**(int(x)))*((1-p)**(n-int(x))) plot f(x+0.5,100,0.5) title "b(100,0.5)" with steps ===== 누적분포함수 ===== $$ F(x) = \sum_{k=0}^{x} \begin{pmatrix} n \\ k \end{pmatrix} p^{k} (1-p)^{n-k} $$ set title "Binomial Distribution CDF" set size 1.0 set yrange [0:1.2] set xrange [-0.5:19.5] set xlabel "x" set ylabel "F(x)" set key left set format y "%.2f" set xlabel "x" set ylabel "F(x)" f(x,n,p) = ibeta(n-int(x),int(x)+1.0,1.0-p) plot f(x+0.5,20,0.1) title "b(20,0.1)" with steps, \ f(x+0.5,20,0.5) title "b(20,0.5)" with steps, \ f(x+0.5,20,0.9) title "b(20,0.9)" with steps ===== 기대값 ===== $$E(X)=np$$ set title "Binomial Distribution Expected Value By n (1)" set size 1.0 set yrange [0:11] set xrange [-0.5:20.5] set format y "%.2f" set xlabel "n" set ylabel "E(X)" set key f(x,p) = (int(x))*p plot f(x+0.5,0.5) title "b(n,0.5)" with steps set title "Binomial Distribution Expected Value By p (2)" set size 1.0 set yrange [0:20] set xrange [0:1] set format y "%.2f" set format x "%.2f" set xlabel "p" set ylabel "E(X)" set key f(x,n) = n*x plot f(x,20) title "b(20,p)" set title "Binomial Distribution Expected Value By n,p (3)" set size 1.0 set zrange [0:20] set yrange [0:1] set xrange [-0.5:20.5] set xlabel "n" set ylabel "p" set zlabel "E(X)" f(x,y) = int(x)*y splot f(x+0.5,y) title "b(n,p)" ===== 분산 ===== $$Var(X)=np(1-p)$$ set title "Binomial Distribution Variance By n (1)" set size 1.0 set yrange [0:5.5] set xrange [-0.5:20.5] set format y "%.2f" set xlabel "n" set ylabel "Var(X)" set key f(x,p) = (int(x))*p*(1-p) plot f(x+0.5,0.5) title "b(n,0.5)" with steps set title "Binomial Distribution Variance By p (2)" set size 1.0 set yrange [0:5.5] set xrange [0:1] set format y "%.2f" set format x "%.2f" set xlabel "p" set ylabel "Var(X)" set key f(x,n) = n*x*(1-x) plot f(x,20) title "b(20,p)" set title "Binomial Distribution Variance By n,p (3)" set size 1.0 set zrange [0:5] set yrange [0:1] set xrange [-0.5:20.5] set xlabel "n" set ylabel "p" set zlabel "Var(X)" f(x,y) = int(x)*y*(1-y) splot f(x+0.5,y) title "b(n,p)" ===== 왜도 ===== $$ \gamma_{ \ 1} = \frac{1 - 2p}{\sqrt{np(1 - p)}} = \frac{q-p}{\sqrt{npq}} $$ set title "Binomial Distribution Skewness By n (1)" set size 1.0 set yrange [-3:3] set xrange [0.5:20.5] set xlabel "n" set ylabel "Skewness" f(x,p) = (1-2*p)/(sqrt(int(x)*p*(1-p))) plot f(x+0.5,0.1) title "b(n,0.1)" with steps, \ f(x+0.5,0.5) title "b(n,0.5)" with steps, \ f(x+0.5,0.9) title "b(n,0.9)" with steps set title "Binomial Distribution Skewness By p (2)" set size 1.0 set yrange [-3:3] set xrange [0:1] set xlabel "p" set ylabel "Skewness" f(x,n) = (1-2*x)/(sqrt(n*x*(1-x))) plot f(x,20) title "b(20,p)" set title "Binomial Distribution Skewness By n,p (3)" set size 1.0 set zrange [-6:6] set yrange [0:1] set xrange [0.5:20.5] set xlabel "n" set ylabel "p" set zlabel "Skewness" f(x,y) = (1-2*y)/(sqrt(int(x)*y*(1-y))) splot f(x+0.5,y) title "b(n,p)" ===== 첨도 ===== $$ \gamma_{ \ 2} = \frac{6p^{2} - 6p + 1}{np(1-p)} = \frac{1 - 6pq}{npq} $$ set title "Binomial Distribution Kurtosis By n (1)" set size 1.0 set yrange [-3:6] set xrange [0.5:20.5] set xlabel "n" set ylabel "Kurtosis" f(x,p) = (1-6*p*(1-p))/(int(x)*p*(1-p)) plot f(x+0.5,0.1) title "b(n,0.1)" with steps, \ f(x+0.5,0.2) title "b(n,0.2)" with steps, \ f(x+0.5,0.3) title "b(n,0.3)" with steps, \ f(x+0.5,0.4) title "b(n,0.4)" with steps, \ f(x+0.5,0.5) title "b(n,0.5)" with steps set title "Binomial Distribution Kurtosis By p (2)" set size 1.0 set yrange [-1:5] set xrange [0:1] set xlabel "p" set ylabel "Kurtosis" f(x,n) = (1-6*x*(1-x))/(n*x*(1-x)) plot f(x,20) title "b(20,p)" set title "Binomial Distribution Kurtosis By n,p (3)" set size 1.0 set zrange [-2:10] set yrange [0:1] set xrange [0.5:20.5] set xlabel "n" set ylabel "p" set zlabel "Kurtosis" f(x,y) = (1-6*y*(1-y))/(int(x)*y*(1-y)) splot f(x+0.5,y) title "b(n,p)" ===== 특성함수 ===== $$ \phi \ (t) = (q + p e^{it})^{n} $$ ===== 적률생성함수 ===== * $$ M(t) = [[ \ pe^{t}+(1-p) \ ]]^{n}$$ * $$ M'(t) = n [[ pe^{t} + (1-p)]]^{n-1} (pe^{t}) $$ * $$ M''(t) = n (n - 1) [[ pe^{t} + (1 - p) ]]^{n-2} + n [[ pe^{t} + (1-p)]]^{n-1} (pe^{t}) $$ ===== 원적률 ===== - $$ \mu'_{1} = np $$ - $$ \mu'_{2} = np(1 - p + np) $$ - $$ \mu'_{3} = np(1 - 3p + 3np + 2p^{2} - 3np^{2} + n^{2} p^{2}) $$ - $$ \mu'_{4} = np(1 - 7p + 7np + 12p^{2} - 18np^{2} + 6n^{2} p^{2} - 6p^{3} + 11np^{3} -6n^{2} p^{3} + n^{3} p^{3}) $$ ===== 중심적률 ===== - $$ \mu_{2} = np(1 - p) = npq $$ - $$ \mu_{3} = np(1 - p)(1 - 2p) = npq(q-p) $$ - $$ \mu_{4} = np(1 - p)[[ 3p^{2} (2-n) + 3p(n-2) + 1 ]] $$ ===== 특징 ===== - [[재생성]]을 가진다. * $X_{i} \sim b(n_{i},p)$이면 $\sum X_{i} \sim b(\sum n_{i} , p)$이 성립한다. ===== 타 분포와의 관계 ===== - [[초기하분포를 이항분포로 근사]] - [[이항분포를 포아송분포로 근사]] - [[이항분포를 정규분포로 근사]] ---- * [[이항분포표]]