====== 베르누이 분포 (Bernoulli Distribution) ====== ===== 정의 ===== ===== 표기 ===== $$ X \sim b(1 , p)$$ * $$ p \in [ \ 0 \ , \ 1 \ ] $$ ===== 받침 ===== $$ x \in \{ \ 0 \ , \ 1 \ \} $$ ===== 확률질량함수 ===== $$p(x)=p^{x}(1-p)^{1-x}$$ set title "Bernoulli Distribution PMF" set size 1.0 set xtics (0,1) set yrange [0:1] set xrange [-0.5:1.5] set format x "%.1f" set format y "%.2f" set xlabel "x" set ylabel "p(x)" f(x,p) = (p**(int(x)))*((1-p)**(1-(int(x)))) plot f(x+0.5,0.4) title "b(1,0.4)" with steps ===== 누적분포함수 ===== $$ F(x) = (1 - p)^{1 - x} $$ set title "Bernoulli Distribution CDF" set size 1.0 set xtics (0,1) set yrange [0:1.1] set xrange [-0.5:1.5] set format x "%.1f" set format y "%.2f" set xlabel "x" set ylabel "F(x)" set key left f(x,p) = ((1-p)**(1-(int(x)))) plot f(x+0.5,0.4) title "b(1,0.4)" with steps ===== 기대값 ===== $$E(X)=p$$ ===== 분산 ===== $$Var(X)=p(1-p)$$ ===== 왜도 ===== $$ \gamma_{ \ 1} = \frac{1 - 2p}{\sqrt{p(1 - p)}} = \frac{q - p}{\sqrt{pq}} $$ ===== 첨도 ===== $$ \gamma_{ \ 2} = \frac{6p^{2} - 6p + 1}{p(1 - p)} = \frac{1 - 6pq}{pq} $$ ===== 특성함수 ===== $$ \phi \ (t) = 1 + p(e^{it} - 1) $$ ===== 적률생성함수 ===== * $$M(t)=pe^{t}+(1-p)$$ * $$ M'(t) = pe^{t} $$ * $$ M''(t) = pe^{t} $$ * $$ M^{(n)}(t) = pe^{t} $$ ===== 원적률 ===== * $$ \mu'_{1} = p $$ * $$ \mu'_{2} = p $$ * $$ \mu'_{n} = p $$ ===== 중심적률 ===== * $$ \mu_{2} = p(1 - p) $$ * $$ \mu_{3} = p(1 - p)(1 - 2p) $$ * $$ \mu_{4} = p(1 - p)(3p^{2} - 3p + 1) $$ ---- * [[분포]] * [[이항분포]]