====== 균일분포 (Uniform Distribution) ====== ===== 정의 ===== ===== 표기 ===== $$ X \sim U(a , b)$$ * $$ a \in ( \ - \infty \ , b ) $$ * $$ b \in ( a , \ \infty \ ) $$ ===== 받침 ===== $$ x \in [ \ a \ , \ b \ ] $$ ===== 확률밀도함수 ===== $$ f(x) = \frac{1}{b-a} $$ set title "Uniform Distribution PDF" set size 1.0 set xrange [1:3] set yrange [0:1] set format x "%.1f" set format y "%.2f" set xlabel "x" set ylabel "f(x)" plot 0.5 title "U(1,3)" ===== 누적분포함수 ===== $$ F(x) = \frac{x - a}{b - a} $$ set title "Uniform Distribution CDF" set size 1.0 set xrange [1:3] set yrange [0:1.1] set format x "%.1f" set format y "%.2f" set xlabel "x" set ylabel "F(x)" set key left f(x,a,b) = (x-a)/(b-a) plot f(x,1,3) title "U(1,3)" ===== 기대값 ===== $$ E(X) = \frac{a+b}{2} $$ ===== 분산 ===== $$ Var(X) = \frac{(b-a)^{2}}{12} $$ ===== 왜도 ===== $$ \gamma_{1} = 0 $$ ===== 첨도 ===== $$ \gamma_{2} = - \frac{6}{5} $$ ===== 특성함수 ===== $$ \phi \ (t) = \frac{2}{(b - a) t} \sin \left[ \frac{1}{2} (b-a) t \right] e^{i(a+b)t/2} $$ 만약, $a=0 , b=1$일 경우 [[특성함수]]는 아래와 같다. $$ \phi \ (t) = \frac{i - i \cos t + \sin t}{t} $$ ===== 적률생성함수 ===== $$ M(t) = \frac{e^{tb}-e^{ta}}{t(b-a)} $$ ===== 원적률 ===== $$ \mu'_{1} = \frac{1}{2} (a+b) $$ $$ \mu'_{2} = \frac{1}{3} (a^{2} + ab + b^{2}) $$ $$ \mu'_{3} = \frac{1}{4} (a+b)(a^{2} + b^{2}) $$ $$ \mu'_{4} = \frac{1}{5} (a^{4} + a^{3} b + a^{2} b^{2} + a b^{3} + b^{4}) $$ $$ \mu'_{k} = \frac{b^{k+1} - a^{k+1}}{(k+1)(b-a)} $$ ===== 중심적률 ===== $$ \mu_{1} = 0 $$ $$ \mu_{2} = \frac{1}{12} (b-a)^{2} $$ $$ \mu_{3} = 0 $$ $$ \mu_{4} = \frac{1}{80} (b-a)^{4} $$ $$ \mu_{k} = \frac{(a-b)^{k} + (b-a)^{k}}{2^{k+1} (k+1)} $$ ===== 유용한 공식 ===== $X \sim U(0,\theta)$일 때, * $$ E(X_{(k)}) = \frac{k}{n+1} \theta $$ * $$ E(X_{(k)}^{2}) = \frac{k}{(n+2)^{2}} \theta^{2} $$ * $$ Var(X_{(k)}) = \frac{k(n-k+1)}{(n+1)^{2} (n+2)} \theta^{2} $$ ---- * [[분포]] * [[연속형 분포]] * [[순서통계량]]