meta data for this page
  •  

차이

문서의 선택한 두 판 사이의 차이를 보여줍니다.

차이 보기로 링크

양쪽 이전 판 이전 판
다음 판
이전 판
삼원배치법_모수모형_반복있음 [2012/07/27 23:34]
moonrepeat [각 [수준]의 [모평균]의 [추정] (주효과만이 유의한 경우)]
삼원배치법_모수모형_반복있음 [2021/03/10 21:42] (현재)
줄 1: 줄 1:
 ====== 삼원배치법 (모수모형) (반복있음) ====== ====== 삼원배치법 (모수모형) (반복있음) ======
 ===== 데이터 구조 ===== ===== 데이터 구조 =====
- ​[요인]&​nbsp&​nbsp $$A$$ 는 [모수인자]+ [[요인]A는 ​[[모수인자]]
  
- ​[요인]&​nbsp&​nbsp $$B$$ 는 [모수인자]+ [[요인]B는 ​[[모수인자]]
  
- ​[요인]&​nbsp&​nbsp $$C$$ 는 [모수인자]+ [[요인]C는 ​[[모수인자]]
  
 + yijkp=μ+ai+bj+ck+(ab)ij+(ac)ik+(bc)jk+(abc)ijk+eijkp
  
-  ​$$ y_{ijkp} ​= \mu + a_{i} + b_{j} + c_{k} + (ab)_{ij} + (ac)_{ik} + (bc)_{jk} + (abc)_{ijk} + e_{ijkp} ​$$+  ​$y_{ijkp}:A_{i}B_{j}C_{k}$ 에서 얻은 $p번째 [[측정값]]
  
 +  * μ  : 실험전체의 [[모평균]]
 +  * ai : Ai가 주는 효과
 +  * bj : Bj가 주는 효과
 +  * ck : Ck가 주는 효과
 +  * (ab)ij : AiBj의 [[교호작용]] 효과
 +  * (ac)ik : AiCk의 [[교호작용]] 효과
 +  * (bc)jk : BjCk의 [[교호작용]] 효과
 +  * (abc)ijk : AiBJ 그리고 Ck의 [[교호작용]] 효과
 +  * eijkp : AiBj 그리고 Ck에서 얻은 p번째 [[측정값]]의 [[오차]] (eijkpN(0,σ 2E)이고 서로 [[독립]])
  
-   ​yijkp &​nbsp&​nbsp : &​nbsp&​nbsp Ai 와&​nbsp&​nbsp Bj &​nbsp&​nbsp그리고&​nbsp&​nbsp Ck 에서 얻은&​nbsp&​nbsp p 번째 [측정값] +  ​i : [[인자]] $A$의 [[수준]] 수 (i=1,2,,l) 
- +  ​* ​j[[인자]] B의 ​[[수준]] 수 (j=1,2,,m) 
-   $μ$ &​nbsp&​nbsp : 실험전체의 [모평균] +  ​* ​k[[인자]] C의 ​[[수준]] 수 (k=1,2,,n) 
- +  ​* ​p : 실험의 ​[[반복]] 수 (p=1,2,,r)
-   $$a_{i}$$ &​nbsp&​nbsp ​&​nbsp&​nbsp Ai 가 주는 효과 +
- +
-   ​bj &​nbsp&​nbsp : &​nbsp&​nbsp Bj 가 주는 효과 +
- +
-   ​ck &​nbsp&​nbsp : &​nbsp&​nbsp Ck 가 주는 효과 +
- +
-   ​(ab)ij &​nbsp&​nbsp : &​nbsp&​nbsp Ai 와&​nbsp&​nbsp Bj 의 [교호작용] 효과 +
- +
-   ​(ac)ik &​nbsp&​nbsp : &​nbsp&​nbsp Ai 와&​nbsp&​nbsp Ck 의 [교호작용효과 +
- +
-   ​(bc)jk &​nbsp&​nbsp : &​nbsp&​nbsp Bj 와&​nbsp&​nbsp Ck 의 [교호작용효과 +
- +
-   ​(abc)ijk &​nbsp&​nbsp : &​nbsp&​nbsp Ai 와&​nbsp&​nbsp BJ &​nbsp&​nbsp그리고&​nbsp&​nbsp $$C_{k}$$ 의 [교호작용] 효과 +
- +
-   ​eijkp &​nbsp&​nbsp : &​nbsp&​nbsp Ai 와&​nbsp&​nbsp Bj &​nbsp&​nbsp그리고&​nbsp&​nbsp Ck 에서 얻은&​nbsp&​nbsp p 번째 [측정값]의 [오차] ​ ( eijkpN(0,σ 2E) 이고 서로 [독립]) +
- +
- +
-    i &​nbsp&​nbsp : 인자&​nbsp&​nbsp A 의 [수준] 수&​nbsp&​nbsp $$( i = 1,2, \cdots ,l )$+
- +
-    $j$ &​nbsp&​nbsp ​: 인자&​nbsp&​nbsp $$B$$ 의 [수준] 수&​nbsp&​nbsp $$( j = 1,2, \cdots ,m )$+
- +
-    $k$ &​nbsp&​nbsp ​: 인자&​nbsp&​nbsp $$C$$ 의 [수준] 수&​nbsp&​nbsp $$( k = 1,2, \cdots ,n )$+
- +
-    $p$ &​nbsp&​nbsp ​: 실험의 [반복] 수&​nbsp&​nbsp $(p=1,2,,r)+
-----+
 ===== 자료의 구조 ===== ===== 자료의 구조 =====
- ||<​|2> ​[인자] ​$B$ ||<​|2> ​[인자] ​$C$ |||||||| ​[인자] ​$A|| + [[인자]]\\ B  ​^ ​ [[인자]]\\ C  ​^ ​ [[인자]A  ||||  
- || A1 ​|| A2 ​||  ​|| Al ​|+^:::​^:::​^  ​A1 ​ ​^  ​A2 ​ ​^  ​ ​ ​^  ​Al ​ 
- |||||||||||| || +^  ​B1 ​ ​^  ​C1 ​  y1111 ​  y2111 ​   ​  yl111 ​ |  
- ​||<​|10> ​B1 ​||<​|3> ​C1 |y1111 |y2111 | |yl111 ​|+^:::^:::  ​   ​   ​   ​ 
- | | | | ​|+^:::^::: y111r ​  y211r ​   ​  yl11r ​ |  
- |y111r |y211r | |yl11r ​|+^:::​^  ​C2 ​  y1121 ​  y2121 ​   ​  yl121 ​ |  
- ||<​|3> ​C2 |y1121 |y2121 | |yl121 ​|+^:::^:::  ​   ​   ​   ​ |  
- | | | | ​|+^:::^::: y112r ​  y212r ​   ​  yl12r ​ |  
- |y112r |y212r | |yl12r ​|+^:::​^  ​ ​   ​   ​   ​  ​ |  
- ||  | | || ||  ​|+^:::​^  ​Cn ​  y11n1 ​  y21n1 ​   ​  yl1n1 ​ |  
- ||<​|3> ​Cn |y11n1 |y21n1 | |yl1n1 ​|+^:::^:::  ​   ​   ​   ​ |  
- | | | | ​|+^:::^::: y11nr ​  y21nr ​   ​  yl1nr ​ |  
- |y11nr |y21nr | |yl1nr ​|+^  ​B2 ​ ​^  ​C1 ​  y1211 ​  y2211 ​   ​  yl211 ​ |  
- ||<​|10> ​B2 ​||<​|3> ​C1 |y1211 |y2211 | |yl211 ​|+^:::^:::  ​   ​   ​   ​ |  
- | | | | ​|+^:::^::: y121r ​  y221r ​   ​  yl21r ​ |  
- |y121r |y221r | |yl21r ​|+^:::​^  ​C2 ​  y1221 ​  y2221 ​   ​  yl221 ​ |  
- ||<​|3> ​C2 |y1221 |y2221 | |yl221 ​|+^:::^:::  ​   ​   ​   ​ |  
- | | | | ​|+^:::^::: y122r ​  y222r ​   ​  yl22r ​ |  
- |y122r |y222r | |yl22r ​|+^:::​^  ​ ​   ​   ​   ​  ​ |  
- ||  | | || ||  ​|+^:::​^  ​Cn ​  y12n1 ​  y22n1 ​   ​  yl2n1 ​ |  
- ||<​|3> ​Cn |y12n1 |y22n1 | |yl2n1 ​|+^:::^:::  ​   ​   ​   ​ |  
- | | | | ​|+^:::^::: y12nr ​  y22nr ​   ​  yl2nr ​ |  
- |y12nr |y22nr | |yl2nr ​|+^  ​ ​ ||   ​ |||| 
- ||||  |||||||| ​ || +^  ​Bm ​ ​^  ​C1 ​  y1m11 ​  y2m11 ​   ​  ylm11 ​ |  
- ||<​|10> ​Bm ​||<​|3> ​C1 |y1m11 |y2m11 | |ylm11 ​|+^:::^:::  ​   ​   ​   ​ |  
- | | | | ​|+^:::^::: y1m1r ​  y2m1r ​   ​  ylm1r ​ |  
- |y1m1r |y2m1r | |ylm1r ​|+^:::​^  ​C2 ​  y1m21 ​  y2m21 ​   ​  ylm21 ​ |  
- ||<​|3> ​C2 |y1m21 |y2m21 | |ylm21 ​|+^:::^:::  ​   ​   ​   ​ |  
- | | | | ​|+^:::^::: y1m2r ​  y2m2r ​   ​  ylm2r ​ |  
- |y1m2r |y2m2r | |ylm2r ​|+^:::​^  ​ ​   ​   ​   ​  ​ |  
- ||  | | || ||  ​|+^:::​^  ​Cn ​  y1mn1 ​  y2mn1 ​   ​  ylmn1 ​ |  
- ||<​|3> ​Cn |y1mn1 |y2mn1 | |ylmn1 ​|+^:::^:::  ​   ​   ​   ​ |  
- | | | | ​|+^:::^::: y1mnr ​  y2mnr ​   ​  ylmnr ​ 
- |y1mnr |y2mnr | |ylmnr ​||+
  
-  $$AB$$ 2원표 + AB 2원표 
-  ​||<​|2> ​[인자] ​$B$ |||||||| ​[인자] ​$A$ ||<​|2> ​합계 ​|+ [[인자]B  ​^ ​ [[인자]A  ​^^^^  ​합계 ​ |  
-  ​|| A1 ​|| A2 ​||  ​|| Al ​|| +^:::^  ​A1 ​ ​^  ​A2 ​ ​^  ​ ​ ​^  ​Al  ​^:::
-  |||||||||||| |+ ​B1 ​  T11.. ​  T21.. ​   ​  Tl1.. ​  T.1.. ​ |  
-  ​|| B1 |T11.. |T21.. | |Tl1.. |T.1.. ​|+ ​B2 ​  T12.. ​  T22.. ​   ​  Tl2.. ​  T.2.. ​ |  
-  ​|| B2 |T12.. |T22.. | |Tl2.. |T.2.. ​|+ ​ ​   ​   ​   ​  ​   ​ |  
-  ​||  | | || ||  | ​|+ ​Bm ​  T1m.. ​  T2m.. ​   ​  Tlm.. ​  T.m.. ​ |  
-  ​|| Bm |T1m.. |T2m.. | |Tlm.. |T.m.. ​|| + ​합계 ​ ​^  ​T1... ​ ​^  ​T2... ​ ​^  ​ ​ ​^  ​Tl... ​ ​^  ​T  
-  |||||||||||| |+
-  ​|| 합계 ​|| T1... ​|| T2... ​||  ​|| Tl... ​|| T ||+
  
-  $$AC$$ 2원표 + AC 2원표 
-  ​||<​|2> ​[인자] ​$C$ |||||||| ​[인자] ​$A$ ||<​|2> ​합계 ​|+ [[인자]C  ​^ ​ [[인자]A  ​^^^^  ​합계 ​ |  
-  ​|| A1 ​|| A2 ​||  ​|| Al ​|| +^:::^  ​A1 ​ ​^  ​A2 ​ ​^  ​ ​ ​^  ​Al  ​^:::
-  |||||||||||| |+ ​C1 ​  T1.1. ​  T2.1. ​   ​  Tl.1. ​  T..1. ​ |  
-  ​|| C1 |T1.1. |T2.1. | |Tl.1. |T..1. ​|+ ​C2 ​  T1.2. ​  T2.2. ​   ​  Tl.2. ​  T..2. ​ |  
-  ​|| C2 |T1.2. |T2.2. | |Tl.2. |T..2. ​|+ ​ ​   ​   ​   ​  ​   ​ |  
-  ​||  | | || ||  | ​|+ ​Cn ​  T1.n. ​  T2.n. ​   ​  Tl.n. ​  T..n. ​ |  
-  ​|| Cn |T1.n. |T2.n. | |Tl.n. |T..n. ​|| + ​합계 ​ ​^  ​T1... ​ ​^  ​T2... ​ ​^  ​ ​ ​^  ​Tl... ​ ​^  ​T  
-  |||||||||||| |+
-  ​|| 합계 ​|| T1... ​|| T2... ​||  ​|| Tl... ​|| T ||+
  
-  $$BC$$ 2원표 + BC 2원표 
-  ​||<​|2> ​[인자] ​$C$ |||||||| ​[인자] ​$B$ ||<​|2> ​합계 ​|+ [[인자]C  ​^ ​ [[인자]B  ​^^^^  ​합계 ​ |  
-  ​|| B1 ​|| B2 ​||  ​|| Bm ​|| +^:::^  ​B1 ​ ​^  ​B2 ​ ​^  ​ ​ ​^  ​Bm  ​^:::
-  |||||||||||| |+ ​C1 ​  T.11. ​  T.21. ​   ​  T.m1. ​  T..1. ​ |  
-  ​|| C1 |T.11. |T.21. | |T.m1. |T..1. ​|+ ​C2 ​  T.12. ​  T.22. ​   ​  T.m2. ​  T..2. ​ |  
-  ​|| C2 |T.12. |T.22. | |T.m2. |T..2. ​|+ ​ ​   ​   ​   ​  ​   ​ |  
-  ​||  | | || ||  | ​|+ ​Cn ​  T.1n. ​  T.2n. ​   ​  T.mn. ​  T..n. ​ |  
-  ​|| Cn |T.1n. |T.2n. | |T.mn. |T..n. ​|| + ​합계 ​ ​^  ​T.1.. ​ ​^  ​T.2.. ​ ​^  ​ ​ ​^  ​T.m.. ​ ​^  ​T  
-  |||||||||||| |+
-  ​|| 합계 ​|| T.1.. ​|| T.2.. ​||  ​|| T.m.. ​|| T ||+
  
-   || Ti...=mj=1nk=1rp=1yijkp ​|| ¯yi...=Ti...mnr ​|+| Ti...=mj=1nk=1rp=1yijkp | ¯yi...=Ti...mnr
-   || T.j..=li=1nk=1rp=1yijkp ​|| ¯y.j..=T.j..lnr ​|+| T.j..=li=1nk=1rp=1yijkp | ¯y.j..=T.j..lnr
-   || T..k.=li=1mj=1rp=1yijkp ​|| ¯y..k.=T..k.lmr ​|+| T..k.=li=1mj=1rp=1yijkp | ¯y..k.=T..k.lmr
-   || Tij..=nk=1rp=1yijkp ​|| ¯yij..=Tij..nr ​|+| Tij..=nk=1rp=1yijkp | ¯yij..=Tij..nr
-   || Ti.k.=mj=1rp=1yijkp ​|| ¯yi.k.=Ti.k.mr ​|+| Ti.k.=mj=1rp=1yijkp | ¯yi.k.=Ti.k.mr
-   || T.jk.=li=1rp=1yijkp ​|| ¯y.jk.=T.jk.lr ​|+| T.jk.=li=1rp=1yijkp | ¯y.jk.=T.jk.lr
-   || Tijk.=rp=1yijkp ​|| ¯yijk.=Tijk.r ​|+| Tijk.=rp=1yijkp | ¯yijk.=Tijk.r
-   || T=li=1mj=1nk=1rp=1yijkp ​|| ¯¯y=Tlmnr=TN ​|+| T=li=1mj=1nk=1rp=1yijkp | ¯¯y=Tlmnr=TN
-   || N=lmnr ​|| CT=T2lmnr=T2N |+| N=lmnr | CT=T2lmnr=T2N
----- +===== 제곱합 ===== 
-===== [제곱합===== + ​개개의 데이터 yijkp와 총¯¯y의 차이는 다음과 같이 8부분으로 나뉘어진다.
- ​개개의 데이터&​nbsp&​nbsp $$y_{ijkp}$$ 와 총&​nbsp&​nbsp $$\overline{\overline{y}}$$ 의 차이는 다음과 같이 8부분으로 나뉘어진다.+
  
-  ​\begin{displaymath}\begin{split} (y_{ijkp}-\overline{\overline{y}}) &= (\overline{y}_{i...} - \overline{\overline{y}}) + (\overline{y}_{.j..} - \overline{\overline{y}}) + (\overline{y}_{..k.} - \overline{\overline{y}}) \\ &+ (\overline{y}_{ij..} - \overline{y}_{i...} - \overline{y}_{.j..} + \overline{\overline{y}}) + (\overline{y}_{i.k.} - \overline{y}_{i...} - \overline{y}_{..k.} + \overline{\overline{y}}) + (\overline{y}_{.jk.} - \overline{y}_{.j..} - \overline{y}_{..k.} + \overline{\overline{y}}) \\ &+ (y_{ijk.} - \overline{y}_{ij..} - \overline{y}_{i.k.} - \overline{y}_{.jk.} + \overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - \overline{\overline{y}}) \\ &+ (y_{ijkp}-\overline{y}_{ijk.}) \end{split}\end{displaymath}+ \begin{displaymath}\begin{split} (y_{ijkp}-\overline{\overline{y}}) &= (\overline{y}_{i...} - \overline{\overline{y}}) + (\overline{y}_{.j..} - \overline{\overline{y}}) + (\overline{y}_{..k.} - \overline{\overline{y}}) \\ &+ (\overline{y}_{ij..} - \overline{y}_{i...} - \overline{y}_{.j..} + \overline{\overline{y}}) + (\overline{y}_{i.k.} - \overline{y}_{i...} - \overline{y}_{..k.} + \overline{\overline{y}}) + (\overline{y}_{.jk.} - \overline{y}_{.j..} - \overline{y}_{..k.} + \overline{\overline{y}}) \\ &+ (y_{ijk.} - \overline{y}_{ij..} - \overline{y}_{i.k.} - \overline{y}_{.jk.} + \overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - \overline{\overline{y}}) \\ &+ (y_{ijkp}-\overline{y}_{ijk.}) \end{split}\end{displaymath}
  
- ​양변을 제곱한 후에 모든&​nbsp&​nbsp $$i, \ j, \ k, \ p$$ 에 대하여 합하면 아래의 등식을 얻을 수 있다.+ ​양변을 제곱한 후에 모든 i, j, k, p에 대하여 합하면 아래의 등식을 얻을 수 있다.
  
-  ​\begin{displaymath}\begin{split} \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i...} - \overline{\overline{y}})^{2} + \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.j..} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{..k.} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..} - \overline{y}_{i...} - \overline{y}_{.j..} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.} - \overline{y}_{i...} - \overline{y}_{..k.} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.} - \overline{y}_{.j..} - \overline{y}_{..k.} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.} - \overline{y}_{ij..} - \overline{y}_{i.k.} - \overline{y}_{.jk.} + \overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{y}_{ijk.})^{2} \end{split}\end{displaymath}+ \begin{displaymath}\begin{split} \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i...} - \overline{\overline{y}})^{2} + \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.j..} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{..k.} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..} - \overline{y}_{i...} - \overline{y}_{.j..} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.} - \overline{y}_{i...} - \overline{y}_{..k.} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.} - \overline{y}_{.j..} - \overline{y}_{..k.} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.} - \overline{y}_{ij..} - \overline{y}_{i.k.} - \overline{y}_{.jk.} + \overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{y}_{ijk.})^{2} \end{split}\end{displaymath}
  
- 위 식에서 왼쪽 항은 총변동 ​$$S_{T}$$ 이고, 오른쪽 항은 차례대로&​nbsp&​nbsp $$A$$ 의 [변동],&​nbsp&​nbsp $$B$$ 의 [변동],&​nbsp&​nbsp $$C$$ 의 [변동],&​nbsp&​nbsp $$A, \ B$$ 의 [교호작용]의 변동,&​nbsp&​nbsp $$A, \ C$$ 의 [교호작용]의 변동,&​nbsp&​nbsp $$B, \ C$$ 의 [교호작용]의 변동,&​nbsp&​nbsp $$A, \ B, \ C$$ 의 [교호작용]의 변동, [오차변동]인&​nbsp&​nbsp $$S_{A}$$ , $$S_{B}$$ , $$S_{C}$$ , $$S_{A \times B}$$ , $$S_{A \times C}$$ , $$S_{B \times C}$$ , $$S_{A \times B \times C}$$ , $$S_{E}$$ 가 된다.+ 위 식에서 왼쪽 항은 총변동 ST이고,​ 오른쪽 항은 차례대로 A의 ​[[변동]], B의 ​[[변동]], C의 ​[[변동]], A, B의 [[교호작용]]의 변동, A, C의 [[교호작용]]의 변동, B, C의 [[교호작용]]의 [[변동]], A, B, C의 [[교호작용]]의 변동, ​[[오차변동]]인 SA, SB, SC, SA×B, SA×C, SB×C, SA×B×C, SE가 된다.
  
 + ​\begin{displaymath}\begin{split} S_{T} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}y_{ijkp}^{ \ 2} - CT \end{split}\end{displaymath}
  
-  ​$$\begin{displaymath}\begin{split} S_{T} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}y_{ijkp}^{ \ 2} - CT \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{A} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{i...}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\frac{T_{i...}^{ \ 2}}{mnr}-CT \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{A} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{i...}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\frac{T_{i...}^{ \ 2}}{mnr}-CT \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{B} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{.j..}-\overline{\overline{y}})^{2} \\ &= \sum_{j=1}^{m}\frac{T_{.j..}^{ \ 2}}{lnr}-CT \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{B} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{.j..}-\overline{\overline{y}})^{2} \\ &= \sum_{j=1}^{m}\frac{T_{.j..}^{ \ 2}}{lnr}-CT \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{..k.}-\overline{\overline{y}})^{2} \\ &= \sum_{k=1}^{n}\frac{T_{..k.}^{ \ 2}}{lmr}-CT \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{..k.}-\overline{\overline{y}})^{2} \\ &​= ​\sum_{k=1}^{n}\frac{T_{..k.}^{ \ 2}}{lmr}-CT ​\end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{A \times B} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..}-\overline{y}_{i...}-\overline{y}_{.j..}+\overline{\overline{y}})^{2} \\ &​= ​S_{AB- S_{A- S_{B} \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{A \times B} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..}-\overline{y}_{i...}-\overline{y}_{.j..}+\overline{\overline{y}})^{2} \\ &S_{AB- S_{A- S_{B} \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{AB} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m\frac{T_{ij..}^\ 2}}{nr} -CT \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{AB} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m} ​\frac{T_{ij..}^{ 2}}{nr} -CT \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{A \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.}-\overline{y}_{i...}-\overline{y}_{..k.}+\overline{\overline{y}})^{2} \\ &= S_{AC- S_{A} - S_{C} \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{A \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.}-\overline{y}_{i...}-\overline{y}_{..k.}+\overline{\overline{y}})^{2} \\ &S_{AC- S_{A- S_{C} \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{AC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{k=1}^{n\frac{T_{i.k.}^\ 2}}{mr} -CT \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{AC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{k=1}^{n\frac{T_{i.k.}^\ 2}}{mr} -CT \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{B \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.}-\overline{y}_{.j..}-\overline{y}_{..k.}+\overline{\overline{y}})^{2} \\ &S_{BC- S_{B- S_{C} \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{B \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.}-\overline{y}_{.j..}-\overline{y}_{..k.}+\overline{\overline{y}})^{2} \\ &S_{BC- S_{B- S_{C} \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{BC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.}-\overline{\overline{y}})^{2} \\ &= \sum_{j=1}^{m}\sum_{k=1}^{n\frac{T_{.jk.}^\ 2}}{lr} -CT \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{BC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.}-\overline{\overline{y}})^{2} \\ &​= ​\sum_{j=1}^{m}\sum_{k=1}^{n\frac{T_{.jk.}^{ \ 2}}{lr-CT \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{A \times B \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.}-\overline{y}_{ij..}-\overline{y}_{i.k.}-\overline{y}_{.jk.}+\overline{y}_{i...}+\overline{y}_{.j..}+\overline{y}_{..k.}-\overline{\overline{y}})^{2} \\ &​= ​S_{ABC}-(S_{A}+S_{B}+S_{C}+S_{A \times B}+S_{\times C}+S_{B \times C}\end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{A \times B \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.}-\overline{y}_{ij..}-\overline{y}_{i.k.}-\overline{y}_{.jk.}+\overline{y}_{i...}+\overline{y}_{.j..}+\overline{y}_{..k.}-\overline{\overline{y}})^{2} \\ &= S_{ABC}-(S_{A}+S_{B}+S_{C}+S_{\times B}+S_{A \times C}+S_{B \times C}\end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{ABC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\frac{T_{ijk.}^{ \ 2}}{r-CT \end{split}\end{displaymath}$$
  
-  \begin{displaymath}\begin{split} S_{ABC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\frac{T_{ijk.}^{ \ 2}}{r} -CT \end{split}\end{displaymath} + ​\begin{displaymath}\begin{split} S_{E} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} \\ &= S_{T} - S_{ABC} \end{split}\end{displaymath} 
- +===== 자유도 =====
-  ​\begin{displaymath}\begin{split} S_{E} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} \\ &= S_{T} - S_{ABC} \end{split}\end{displaymath} +
----- +
-===== [자유도=====+
  ​νA=l1  ​νA=l1
  
줄 175: 줄 150:
  
  ​νT=lmnr1=N1  ​νT=lmnr1=N1
----- +===== 평균제곱 =====
-===== [평균제곱=====+
  ​VA=SAνA  ​VA=SAνA
  
줄 192: 줄 166:
  
  ​VE=SEνE  ​VE=SEνE
----- +===== 평균제곱의 기대값 =====
-===== [평균제곱의 기대값=====+
  ​E(VA)=σ 2E+mnrσ 2A  ​E(VA)=σ 2E+mnrσ 2A
  
줄 209: 줄 182:
  
  ​E(VE)=σ 2E  ​E(VE)=σ 2E
----- 
 ===== 분산분석표 ===== ===== 분산분석표 =====
- || '''​[요인]'''​ || '''​[제곱합]'''​ $SS$ || '''​[자유도]'''​ $DF$ || '''​[평균제곱]'''​ $MS||E(MS)||F0$ || '''​기각치'''​ || '''​[순변동]'''​ $S´$ || '''​[기여율]'''​ $\rho$ |+ [[요인]]  ^  [[제곱합]]\\ SS  ​^ ​ [[자유도]]\\ DF  ​^ ​ [[평균제곱]]\\ MS  ​^  ​E(MS) ​ ​^  ​F_{0} ​ ​^ ​ [[기각치]]  ^  [[순변동]]\\ S\acute{} ​ ​^ ​ [[기여율]]\\ \rho ​ |  
- |||||||||||||||||| || + A   S_{_{A}} ​  \nu_{_{A}}=l-1 ​  V_{_{A}}=S_{_{A}}/​\nu_{_{A}} ​  \sigma_{_{E}}^{ \ 2}+mnr \ \sigma_{_{A}}^{2} ​  V_{_{A}}/​V_{_{E}} ​  F_{1-\alpha}(\nu_{_{A}} \ , \ \nu_{_{E}}) ​  S_{_{A}}\acute{} ​  S_{_{A}}\acute{}/​S_{_{T}} ​ |  
- ​|| ​A |S_{_{A}} |\nu_{_{A}}=l-1 |V_{_{A}}=S_{_{A}}/​\nu_{_{A}} |\sigma_{_{E}}^{ \ 2}+mnr \ \sigma_{_{A}}^{2} |V_{_{A}}/​V_{_{E}} |F_{1-\alpha}(\nu_{_{A}} \ , \ \nu_{_{E}}) |S_{_{A}}\acute{} |S_{_{A}}\acute{}/​S_{_{T}} ​|+ B   S_{_{B}} ​  \nu_{_{B}}=m-1 ​  V_{_{B}}=S_{_{B}}/​\nu_{_{B}} ​  \sigma_{_{E}}^{ \ 2}+lnr \ \sigma_{_{B}}^{2} ​  V_{_{B}}/​V_{_{E}} ​  F_{1-\alpha}(\nu_{_{B}} \ , \ \nu_{_{E}}) ​  S_{_{B}}\acute{} ​  S_{_{B}}\acute{}/​S_{_{T}} ​ |  
- |B |S_{_{B}} |\nu_{_{B}}=m-1 |V_{_{B}}=S_{_{B}}/​\nu_{_{B}} |\sigma_{_{E}}^{ \ 2}+lnr \ \sigma_{_{B}}^{2} |V_{_{B}}/​V_{_{E}} |F_{1-\alpha}(\nu_{_{B}} \ , \ \nu_{_{E}}) |S_{_{B}}\acute{} |S_{_{B}}\acute{}/​S_{_{T}} ​|+ C   S_{_{C}} ​  \nu_{_{C}}=n-1 ​  V_{_{C}}=S_{_{C}}/​\nu_{_{C}} ​  \sigma_{_{E}}^{ \ 2}+lmr \ \sigma_{_{C}}^{2} ​  V_{_{C}}/​V_{_{E}} ​  F_{1-\alpha}(\nu_{_{C}} \ , \ \nu_{_{E}}) ​  S_{_{C}}\acute{} ​  S_{_{C}}\acute{}/​S_{_{T}} ​ |  
- |C |S_{_{C}} |\nu_{_{C}}=n-1 |V_{_{C}}=S_{_{C}}/​\nu_{_{C}} |\sigma_{_{E}}^{ \ 2}+lmr \ \sigma_{_{C}}^{2} |V_{_{C}}/​V_{_{E}} |F_{1-\alpha}(\nu_{_{C}} \ , \ \nu_{_{E}}) |S_{_{C}}\acute{} |S_{_{C}}\acute{}/​S_{_{T}} ​|+ A \times B   S_{_{A \times B}}   \nu_{_{A \times B}}=(l-1)(m-1) ​  V_{_{A \times B}}=S_{_{A \times B}}/​\nu_{_{A \times B}}   \sigma_{_{E}}^{ \ 2}+nr \ \sigma_{_{A \times B}}^{2} ​  V_{_{A \times B}}/​V_{_{E}} ​  F_{1-\alpha}(\nu_{_{A \times B}} \ , \ \nu_{_{E}}) ​  S_{_{A \times B}}\acute{} ​  S_{_{A \times B}}\acute{}/​S_{_{T}} ​ |  
- |A \times B |S_{_{A \times B}} |\nu_{_{A \times B}}=(l-1)(m-1) |V_{_{A \times B}}=S_{_{A \times B}}/​\nu_{_{A \times B}} |\sigma_{_{E}}^{ \ 2}+nr \ \sigma_{_{A \times B}}^{2} |V_{_{A \times B}}/​V_{_{E}} |F_{1-\alpha}(\nu_{_{A \times B}} \ , \ \nu_{_{E}}) |S_{_{A \times B}}\acute{} |S_{_{A \times B}}\acute{}/​S_{_{T}} ​|+ A \times C   S_{_{A \times C}}   \nu_{_{A \times C}}=(l-1)(n-1) ​  V_{_{A \times C}}=S_{_{A \times C}}/​\nu_{_{A \times C}}   \sigma_{_{E}}^{ \ 2}+mr \ \sigma_{_{A \times C}}^{2} ​  V_{_{A \times C}}/​V_{_{E}} ​  F_{1-\alpha}(\nu_{_{A \times C}} \ , \ \nu_{_{E}}) ​  S_{_{A \times C}}\acute{} ​  S_{_{A \times C}}\acute{}/​S_{_{T}} ​ |  
- |A \times C |S_{_{A \times C}} |\nu_{_{A \times C}}=(l-1)(n-1) |V_{_{A \times C}}=S_{_{A \times C}}/​\nu_{_{A \times C}} |\sigma_{_{E}}^{ \ 2}+mr \ \sigma_{_{A \times C}}^{2} |V_{_{A \times C}}/​V_{_{E}} |F_{1-\alpha}(\nu_{_{A \times C}} \ , \ \nu_{_{E}}) |S_{_{A \times C}}\acute{} |S_{_{A \times C}}\acute{}/​S_{_{T}} ​|+ B \times C   S_{_{B \times C}}   \nu_{_{B \times C}}=(m-1)(n-1) ​  V_{_{B \times C}}=S_{_{B \times C}}/​\nu_{_{B \times C}}   \sigma_{_{E}}^{ \ 2}+lr \ \sigma_{_{B \times C}}^{2} ​  V_{_{B \times C}}/​V_{_{E}} ​  F_{1-\alpha}(\nu_{_{B \times C}} \ , \ \nu_{_{E}}) ​  S_{_{B \times C}}\acute{} ​  S_{_{B \times C}}\acute{}/​S_{_{T}} ​ |  
- |B \times C |S_{_{B \times C}} |\nu_{_{B \times C}}=(m-1)(n-1) |V_{_{B \times C}}=S_{_{B \times C}}/​\nu_{_{B \times C}} |\sigma_{_{E}}^{ \ 2}+lr \ \sigma_{_{B \times C}}^{2} |V_{_{B \times C}}/​V_{_{E}} |F_{1-\alpha}(\nu_{_{B \times C}} \ , \ \nu_{_{E}}) |S_{_{B \times C}}\acute{} |S_{_{B \times C}}\acute{}/​S_{_{T}} ​|+ A \times B \times C   S_{_{A \times B \times C}}   \nu_{_{A \times B \times C}}=(l-1)(m-1)(n-1) ​  V_{_{A \times B \times C}}=S_{_{A \times B \times C}}/​\nu_{_{A \times B \times C}}   \sigma_{_{E}}^{ \ 2}+r \ \sigma_{_{A \times B \times C}}^{ \ 2}   V_{_{A \times B \times C}}/​V_{_{E}} ​  F_{1-\alpha}(\nu_{_{A \times B \times C}} \ , \ \nu_{_{E}}) ​  S_{_{A \times B \times C}}\acute{} ​  S_{_{A \times B \times C}}\acute{}/​S_{_{T}} ​ |  
- |A \times B \times C |S_{_{A \times B \times C}} |\nu_{_{A \times B \times C}}=(l-1)(m-1)(n-1) |V_{_{A \times B \times C}}=S_{_{A \times B \times C}}/​\nu_{_{A \times B \times C}} |\sigma_{_{E}}^{ \ 2}+r \ \sigma_{_{A \times B \times C}}^{ \ 2} |V_{_{A \times B \times C}}/​V_{_{E}} |F_{1-\alpha}(\nu_{_{A \times B \times C}} \ , \ \nu_{_{E}}) |S_{_{A \times B \times C}}\acute{} |S_{_{A \times B \times C}}\acute{}/​S_{_{T}} ​|+ E   S_{_{E}} ​  \nu_{_{E}}=lmn(r-1) ​  V_{_{E}}=S_{_{E}}/​\nu_{_{E}} ​  \sigma_{_{E}}^{ \ 2}        S_{_{E}}\acute{} ​  S_{_{E}}\acute{}/​S_{_{T}} ​ |  
- |E |S_{_{E}} |\nu_{_{E}}=lmn(r-1) |V_{_{E}}=S_{_{E}}/​\nu_{_{E}} |\sigma_{_{E}}^{ \ 2} ||  ||  ​|| S_{_{E}}\acute{} |S_{_{E}}\acute{}/​S_{_{T}} ​|+ T   S_{_{T}} ​  \nu_{_{T}}=lmnr-1 ​ |             S_{_{T}} ​  1  |  
- |||||||||||||||||| || +===== 분산분석 ===== 
- ​|| ​T |S_{_{T}} |\nu_{_{T}}=lmnr-1 ​||  ​|| ​ ||  ||  ​|| S_{_{T}} |1 |+ [[인자]] A에 대한 ​[[분산분석]]
----- +
-===== [분산분석===== +
- ​인자&​nbsp&​nbsp $$A$$ 에 대한 [분산분석]+
  
-  F_{0}=\frac{V_{_{A}}}{V_{_{E}}}+  ​$$F_{0}=\frac{V_{_{A}}}{V_{_{E}}}$
 + 
 + ​[[기각역]] : $F_{0} > F_{1-\alpha}(\nu_{_{A}},​\nu_{_{E}})$
  
-  [기각역] :&​nbsp&​nbsp F_{0} > F_{1-\alpha}(\nu_{_{A}},​\nu_{_{E}}) 
 ---- ----
- ​인자&​nbsp&​nbsp $$B$$ 에 대한 [분산분석]+ [[인자]] B에 대한 ​[[분산분석]]
  
-  F_{0}=\frac{V_{_{B}}}{V_{_{E}}}+  ​$$F_{0}=\frac{V_{_{B}}}{V_{_{E}}}$
 + 
 + ​[[기각역]] : $F_{0} > F_{1-\alpha}(\nu_{_{B}},​\nu_{_{E}})$
  
-  [기각역] :&​nbsp&​nbsp F_{0} > F_{1-\alpha}(\nu_{_{B}},​\nu_{_{E}}) 
 ---- ----
- ​인자&​nbsp&​nbsp $$C$$ 에 대한 [분산분석]+ [[인자]] C에 대한 ​[[분산분석]
 + 
 +  * F_{0}=\frac{V_{_{C}}}{V_{_{E}}}
  
-  $$F_{0}=\frac{V_{_{C}}}{V_{_{E}}}$$+ ​[[기각역]] : $F_{0} ​> F_{1-\alpha}(\nu_{_{C}},\nu_{_{E}})$
  
-  [기각역] :&​nbsp&​nbsp F_{0} > F_{1-\alpha}(\nu_{_{C}},​\nu_{_{E}}) 
 ---- ----
- ​인자&​nbsp&​nbsp $$A , \ B$$ 의 [교호작용] 대한 [분산분석]+ [[인자]] A , \ B의 [[교호작용]]에 대한 ​[[분산분석]]
  
-  F_{0}=\frac{V_{_{A \times B}}}{V_{E}}+  ​$$F_{0}=\frac{V_{_{A \times B}}}{V_{E}}$
 + 
 + ​[[기각역]] : $F_{0} > F_{1-\alpha}(\nu_{_{A \times B}},​\nu_{_{E}})$
  
-  [기각역] :&​nbsp&​nbsp F_{0} > F_{1-\alpha}(\nu_{_{A \times B}},​\nu_{_{E}}) 
 ---- ----
- ​인자&​nbsp&​nbsp $$A , \ C$$ 의 [교호작용] 대한 [분산분석]+ [[인자]] A , \ C의 [[교호작용]]에 대한 ​[[분산분석]]
  
-  F_{0}=\frac{V_{_{A \times C}}}{V_{E}}+  ​$$F_{0}=\frac{V_{_{A \times C}}}{V_{E}}$
 + 
 + ​[[기각역]] : $F_{0} > F_{1-\alpha}(\nu_{_{A \times C}},​\nu_{_{E}})$
  
-  [기각역] :&​nbsp&​nbsp F_{0} > F_{1-\alpha}(\nu_{_{A \times C}},​\nu_{_{E}}) 
 ---- ----
- ​인자&​nbsp&​nbsp $$B , \ C$$ 의 [교호작용] 대한 [분산분석]+ [[인자]] B , \ C의 [[교호작용]]에 대한 ​[[분산분석]]
  
-  F_{0}=\frac{V_{B \times C}}{V_{E}}+  ​$$F_{0}=\frac{V_{B \times C}}{V_{E}}$
 + 
 + ​[[기각역]] : $F_{0} > F_{1-\alpha}(\nu_{_{B \times C}},​\nu_{_{E}})$
  
-  [기각역] :&​nbsp&​nbsp F_{0} > F_{1-\alpha}(\nu_{_{B \times C}},​\nu_{_{E}}) 
 ---- ----
- ​인자&​nbsp&​nbsp $$A , \ B , \ C$$ 의 [교호작용] 대한 [분산분석]+ [[인자]] A , \ B , \ C의 [[교호작용]]에 대한 ​[[분산분석]]
  
-  F_{0}=\frac{V_{A \times B \times C}}{V_{E}}}+  ​F_{0}=\frac{V_{A \times B \times C}}{V_{E}}}
  
-  ​[기각역] :&​nbsp&​nbsp $F_{0} > F_{1-\alpha}(\nu_{A \times B \times C},​\nu_{_{E}})+ [[기각역]] : F_{0} > F_{1-\alpha}(\nu_{A \times B \times C},​\nu_{_{E}})
-----+
 ===== 각 수준의 모평균의 추정 (주효과만이 유의한 경우) ===== ===== 각 수준의 모평균의 추정 (주효과만이 유의한 경우) =====
  ​주효과인 [[인자]] A, B, C만이 유의한 경우 [[교호작용]]들이 모두 오차항에 [[풀링]]되어 버린다.  ​주효과인 [[인자]] A, B, C만이 유의한 경우 [[교호작용]]들이 모두 오차항에 [[풀링]]되어 버린다.