meta data for this page
차이
문서의 선택한 두 판 사이의 차이를 보여줍니다.
양쪽 이전 판 이전 판 다음 판 | 이전 판 | ||
삼원배치법_모수모형_반복있음 [2012/07/27 23:34] moonrepeat [각 [수준]의 [모평균]의 [추정] (주효과만이 유의한 경우)] |
삼원배치법_모수모형_반복있음 [2021/03/10 21:42] (현재) |
||
---|---|---|---|
줄 1: | 줄 1: | ||
====== 삼원배치법 (모수모형) (반복있음) ====== | ====== 삼원배치법 (모수모형) (반복있음) ====== | ||
===== 데이터 구조 ===== | ===== 데이터 구조 ===== | ||
- | [요인]   $$A$$ 는 [모수인자] | + | [[요인]] A는 [[모수인자]] |
- | [요인]   $$B$$ 는 [모수인자] | + | [[요인]] B는 [[모수인자]] |
- | [요인]   $$C$$ 는 [모수인자] | + | [[요인]] C는 [[모수인자]] |
+ | yijkp=μ+ai+bj+ck+(ab)ij+(ac)ik+(bc)jk+(abc)ijk+eijkp | ||
- | $$ y_{ijkp} = \mu + a_{i} + b_{j} + c_{k} + (ab)_{ij} + (ac)_{ik} + (bc)_{jk} + (abc)_{ijk} + e_{ijkp} $$ | + | * $y_{ijkp}:A_{i}와B_{j}그리고C_{k}$ 에서 얻은 $p$ 번째 [[측정값]] |
+ | * μ : 실험전체의 [[모평균]] | ||
+ | * ai : Ai가 주는 효과 | ||
+ | * bj : Bj가 주는 효과 | ||
+ | * ck : Ck가 주는 효과 | ||
+ | * (ab)ij : Ai와 Bj의 [[교호작용]] 효과 | ||
+ | * (ac)ik : Ai와 Ck의 [[교호작용]] 효과 | ||
+ | * (bc)jk : Bj와 Ck의 [[교호작용]] 효과 | ||
+ | * (abc)ijk : Ai와 BJ 그리고 Ck의 [[교호작용]] 효과 | ||
+ | * eijkp : Ai와 Bj 그리고 Ck에서 얻은 p번째 [[측정값]]의 [[오차]] (eijkp∼N(0,σ 2E)이고 서로 [[독립]]) | ||
- | yijkp    :    Ai 와   Bj   그리고   Ck 에서 얻은   p 번째 [측정값] | + | * i : [[인자]] $A$의 [[수준]] 수 (i=1,2,⋯,l) |
- | + | * j : [[인자]] B의 [[수준]] 수 (j=1,2,⋯,m) | |
- | $μ$    : 실험전체의 [모평균] | + | * k : [[인자]] C의 [[수준]] 수 (k=1,2,⋯,n) |
- | + | * p : 실험의 [[반복]] 수 (p=1,2,⋯,r) | |
- | $$a_{i}$$    :    Ai 가 주는 효과 | + | |
- | + | ||
- | bj    :    Bj 가 주는 효과 | + | |
- | + | ||
- | ck    :    Ck 가 주는 효과 | + | |
- | + | ||
- | (ab)ij    :    Ai 와   Bj 의 [교호작용] 효과 | + | |
- | + | ||
- | (ac)ik    :    Ai 와   Ck 의 [교호작용] 효과 | + | |
- | + | ||
- | (bc)jk    :    Bj 와   Ck 의 [교호작용] 효과 | + | |
- | + | ||
- | (abc)ijk    :    Ai 와   BJ   그리고   $$C_{k}$$ 의 [교호작용] 효과 | + | |
- | + | ||
- | eijkp    :    Ai 와   Bj   그리고   Ck 에서 얻은   p 번째 [측정값]의 [오차] ( eijkp∼N(0,σ 2E) 이고 서로 [독립]) | + | |
- | + | ||
- | + | ||
- | i    : 인자   A 의 [수준] 수   $$( i = 1,2, \cdots ,l )$$ | + | |
- | + | ||
- | $j$    : 인자   $$B$$ 의 [수준] 수   $$( j = 1,2, \cdots ,m )$$ | + | |
- | + | ||
- | $k$    : 인자   $$C$$ 의 [수준] 수   $$( k = 1,2, \cdots ,n )$$ | + | |
- | + | ||
- | $p$    : 실험의 [반복] 수   $(p=1,2,⋯,r)$ | + | |
- | ---- | + | |
===== 자료의 구조 ===== | ===== 자료의 구조 ===== | ||
- | ||<|2> [인자] $B$ ||<|2> [인자] $C$ |||||||| [인자] $A$ || | + | ^ [[인자]]\\ B ^ [[인자]]\\ C ^ [[인자]] A |||| |
- | || A1 || A2 || ⋯ || Al || | + | ^:::^:::^ A1 ^ A2 ^ ⋯ ^ Al | |
- | |||||||||||| || | + | ^ B1 ^ C1 | y1111 | y2111 | ⋯ | yl111 | |
- | ||<|10> B1 ||<|3> C1 || y1111 || y2111 || ⋯ || yl111 || | + | ^:::^:::| ⋮ | ⋮ | ⋮ | ⋮ | |
- | || ⋮ || ⋮ || ⋮ || ⋮ || | + | ^:::^:::| y111r | y211r | ⋯ | yl11r | |
- | || y111r || y211r || ⋯ || yl11r || | + | ^:::^ C2 | y1121 | y2121 | ⋯ | yl121 | |
- | ||<|3> C2 || y1121 || y2121 || ⋯ || yl121 || | + | ^:::^:::| ⋮ | ⋮ | ⋮ | ⋮ | |
- | || ⋮ || ⋮ || ⋮ || ⋮ || | + | ^:::^:::| y112r | y212r | ⋯ | yl12r | |
- | || y112r || y212r || ⋯ || yl12r || | + | ^:::^ ⋮ | ⋮ | ⋮ | | ⋮ | |
- | || ⋮ || ⋮ || ⋮ || || ⋮ || | + | ^:::^ Cn | y11n1 | y21n1 | ⋯ | yl1n1 | |
- | ||<|3> Cn || y11n1 || y21n1 || ⋯ || yl1n1 || | + | ^:::^:::| ⋮ | ⋮ | ⋮ | ⋮ | |
- | || ⋮ || ⋮ || ⋮ || ⋮ || | + | ^:::^:::| y11nr | y21nr | ⋯ | yl1nr | |
- | || y11nr || y21nr || ⋯ || yl1nr || | + | ^ B2 ^ C1 | y1211 | y2211 | ⋯ | yl211 | |
- | ||<|10> B2 ||<|3> C1 || y1211 || y2211 || ⋯ || yl211 || | + | ^:::^:::| ⋮ | ⋮ | ⋮ | ⋮ | |
- | || ⋮ || ⋮ || ⋮ || ⋮ || | + | ^:::^:::| y121r | y221r | ⋯ | yl21r | |
- | || y121r || y221r || ⋯ || yl21r || | + | ^:::^ C2 | y1221 | y2221 | ⋯ | yl221 | |
- | ||<|3> C2 || y1221 || y2221 || ⋯ || yl221 || | + | ^:::^:::| ⋮ | ⋮ | ⋮ | ⋮ | |
- | || ⋮ || ⋮ || ⋮ || ⋮ || | + | ^:::^:::| y122r | y222r | ⋯ | yl22r | |
- | || y122r || y222r || ⋯ || yl22r || | + | ^:::^ ⋮ | ⋮ | ⋮ | | ⋮ | |
- | || ⋮ || ⋮ || ⋮ || || ⋮ || | + | ^:::^ Cn | y12n1 | y22n1 | ⋯ | yl2n1 | |
- | ||<|3> Cn || y12n1 || y22n1 || ⋯ || yl2n1 || | + | ^:::^:::| ⋮ | ⋮ | ⋮ | ⋮ | |
- | || ⋮ || ⋮ || ⋮ || ⋮ || | + | ^:::^:::| y12nr | y22nr | ⋯ | yl2nr | |
- | || y12nr || y22nr || ⋯ || yl2nr || | + | ^ ⋮ || ⋮ |||| |
- | |||| ⋮ |||||||| ⋮ || | + | ^ Bm ^ C1 | y1m11 | y2m11 | ⋯ | ylm11 | |
- | ||<|10> Bm ||<|3> C1 || y1m11 || y2m11 || ⋯ || ylm11 || | + | ^:::^:::| ⋮ | ⋮ | ⋮ | ⋮ | |
- | || ⋮ || ⋮ || ⋮ || ⋮ || | + | ^:::^:::| y1m1r | y2m1r | ⋯ | ylm1r | |
- | || y1m1r || y2m1r || ⋯ || ylm1r || | + | ^:::^ C2 | y1m21 | y2m21 | ⋯ | ylm21 | |
- | ||<|3> C2 || y1m21 || y2m21 || ⋯ || ylm21 || | + | ^:::^:::| ⋮ | ⋮ | ⋮ | ⋮ | |
- | || ⋮ || ⋮ || ⋮ || ⋮ || | + | ^:::^:::| y1m2r | y2m2r | ⋯ | ylm2r | |
- | || y1m2r || y2m2r || ⋯ || ylm2r || | + | ^:::^ ⋮ | ⋮ | ⋮ | | ⋮ | |
- | || ⋮ || ⋮ || ⋮ || || ⋮ || | + | ^:::^ Cn | y1mn1 | y2mn1 | ⋯ | ylmn1 | |
- | ||<|3> Cn || y1mn1 || y2mn1 || ⋯ || ylmn1 || | + | ^:::^:::| ⋮ | ⋮ | ⋮ | ⋮ | |
- | || ⋮ || ⋮ || ⋮ || ⋮ || | + | ^:::^:::| y1mnr | y2mnr | ⋯ | ylmnr | |
- | || y1mnr || y2mnr || ⋯ || ylmnr || | + | |
- | $$AB$$ 2원표 | + | AB 2원표 |
- | ||<|2> [인자] $B$ |||||||| [인자] $A$ ||<|2> 합계 || | + | ^ [[인자]] B ^ [[인자]] A ^^^^ 합계 | |
- | || A1 || A2 || ⋯ || Al || | + | ^:::^ A1 ^ A2 ^ ⋯ ^ Al ^:::| |
- | |||||||||||| || | + | ^ B1 | T11.. | T21.. | ⋯ | Tl1.. | T.1.. | |
- | || B1 || T11.. || T21.. || ⋯ || Tl1.. || T.1.. || | + | ^ B2 | T12.. | T22.. | ⋯ | Tl2.. | T.2.. | |
- | || B2 || T12.. || T22.. || ⋯ || Tl2.. || T.2.. || | + | ^ ⋮ | ⋮ | ⋮ | | ⋮ | ⋮ | |
- | || ⋮ || ⋮ || ⋮ || || ⋮ || ⋮ || | + | ^ Bm | T1m.. | T2m.. | ⋯ | Tlm.. | T.m.. | |
- | || Bm || T1m.. || T2m.. || ⋯ || Tlm.. || T.m.. || | + | ^ 합계 ^ T1... ^ T2... ^ ⋯ ^ Tl... ^ T | |
- | |||||||||||| || | + | |
- | || 합계 || T1... || T2... || ⋯ || Tl... || T || | + | |
- | $$AC$$ 2원표 | + | AC 2원표 |
- | ||<|2> [인자] $C$ |||||||| [인자] $A$ ||<|2> 합계 || | + | ^ [[인자]] C ^ [[인자]] A ^^^^ 합계 | |
- | || A1 || A2 || ⋯ || Al || | + | ^:::^ A1 ^ A2 ^ ⋯ ^ Al ^:::| |
- | |||||||||||| || | + | ^ C1 | T1.1. | T2.1. | ⋯ | Tl.1. | T..1. | |
- | || C1 || T1.1. || T2.1. || ⋯ || Tl.1. || T..1. || | + | ^ C2 | T1.2. | T2.2. | ⋯ | Tl.2. | T..2. | |
- | || C2 || T1.2. || T2.2. || ⋯ || Tl.2. || T..2. || | + | ^ ⋮ | ⋮ | ⋮ | | ⋮ | ⋮ | |
- | || ⋮ || ⋮ || ⋮ || || ⋮ || ⋮ || | + | ^ Cn | T1.n. | T2.n. | ⋯ | Tl.n. | T..n. | |
- | || Cn || T1.n. || T2.n. || ⋯ || Tl.n. || T..n. || | + | ^ 합계 ^ T1... ^ T2... ^ ⋯ ^ Tl... ^ T | |
- | |||||||||||| || | + | |
- | || 합계 || T1... || T2... || ⋯ || Tl... || T || | + | |
- | $$BC$$ 2원표 | + | BC 2원표 |
- | ||<|2> [인자] $C$ |||||||| [인자] $B$ ||<|2> 합계 || | + | ^ [[인자]] C ^ [[인자]] B ^^^^ 합계 | |
- | || B1 || B2 || ⋯ || Bm || | + | ^:::^ B1 ^ B2 ^ ⋯ ^ Bm ^:::| |
- | |||||||||||| || | + | ^ C1 | T.11. | T.21. | ⋯ | T.m1. | T..1. | |
- | || C1 || T.11. || T.21. || ⋯ || T.m1. || T..1. || | + | ^ C2 | T.12. | T.22. | ⋯ | T.m2. | T..2. | |
- | || C2 || T.12. || T.22. || ⋯ || T.m2. || T..2. || | + | ^ ⋮ | ⋮ | ⋮ | | ⋮ | ⋮ | |
- | || ⋮ || ⋮ || ⋮ || || ⋮ || ⋮ || | + | ^ Cn | T.1n. | T.2n. | ⋯ | T.mn. | T..n. | |
- | || Cn || T.1n. || T.2n. || ⋯ || T.mn. || T..n. || | + | ^ 합계 ^ T.1.. ^ T.2.. ^ ⋯ ^ T.m.. ^ T | |
- | |||||||||||| || | + | |
- | || 합계 || T.1.. || T.2.. || ⋯ || T.m.. || T || | + | |
- | || Ti...=m∑j=1n∑k=1r∑p=1yijkp || ¯yi...=Ti...mnr || | + | | Ti...=m∑j=1n∑k=1r∑p=1yijkp | ¯yi...=Ti...mnr | |
- | || T.j..=l∑i=1n∑k=1r∑p=1yijkp || ¯y.j..=T.j..lnr || | + | | T.j..=l∑i=1n∑k=1r∑p=1yijkp | ¯y.j..=T.j..lnr | |
- | || T..k.=l∑i=1m∑j=1r∑p=1yijkp || ¯y..k.=T..k.lmr || | + | | T..k.=l∑i=1m∑j=1r∑p=1yijkp | ¯y..k.=T..k.lmr | |
- | || Tij..=n∑k=1r∑p=1yijkp || ¯yij..=Tij..nr || | + | | Tij..=n∑k=1r∑p=1yijkp | ¯yij..=Tij..nr | |
- | || Ti.k.=m∑j=1r∑p=1yijkp || ¯yi.k.=Ti.k.mr || | + | | Ti.k.=m∑j=1r∑p=1yijkp | ¯yi.k.=Ti.k.mr | |
- | || T.jk.=l∑i=1r∑p=1yijkp || ¯y.jk.=T.jk.lr || | + | | T.jk.=l∑i=1r∑p=1yijkp | ¯y.jk.=T.jk.lr | |
- | || Tijk.=r∑p=1yijkp || ¯yijk.=Tijk.r || | + | | Tijk.=r∑p=1yijkp | ¯yijk.=Tijk.r | |
- | || T=l∑i=1m∑j=1n∑k=1r∑p=1yijkp || ¯¯y=Tlmnr=TN || | + | | T=l∑i=1m∑j=1n∑k=1r∑p=1yijkp | ¯¯y=Tlmnr=TN | |
- | || N=lmnr || CT=T2lmnr=T2N || | + | | N=lmnr | CT=T2lmnr=T2N | |
- | ---- | + | ===== 제곱합 ===== |
- | ===== [제곱합] ===== | + | 개개의 데이터 yijkp와 총평균 ¯¯y의 차이는 다음과 같이 8부분으로 나뉘어진다. |
- | 개개의 데이터   $$y_{ijkp}$$ 와 총편균   $$\overline{\overline{y}}$$ 의 차이는 다음과 같이 8부분으로 나뉘어진다. | + | |
- | \begin{displaymath}\begin{split} (y_{ijkp}-\overline{\overline{y}}) &= (\overline{y}_{i...} - \overline{\overline{y}}) + (\overline{y}_{.j..} - \overline{\overline{y}}) + (\overline{y}_{..k.} - \overline{\overline{y}}) \\ &+ (\overline{y}_{ij..} - \overline{y}_{i...} - \overline{y}_{.j..} + \overline{\overline{y}}) + (\overline{y}_{i.k.} - \overline{y}_{i...} - \overline{y}_{..k.} + \overline{\overline{y}}) + (\overline{y}_{.jk.} - \overline{y}_{.j..} - \overline{y}_{..k.} + \overline{\overline{y}}) \\ &+ (y_{ijk.} - \overline{y}_{ij..} - \overline{y}_{i.k.} - \overline{y}_{.jk.} + \overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - \overline{\overline{y}}) \\ &+ (y_{ijkp}-\overline{y}_{ijk.}) \end{split}\end{displaymath} | + | \begin{displaymath}\begin{split} (y_{ijkp}-\overline{\overline{y}}) &= (\overline{y}_{i...} - \overline{\overline{y}}) + (\overline{y}_{.j..} - \overline{\overline{y}}) + (\overline{y}_{..k.} - \overline{\overline{y}}) \\ &+ (\overline{y}_{ij..} - \overline{y}_{i...} - \overline{y}_{.j..} + \overline{\overline{y}}) + (\overline{y}_{i.k.} - \overline{y}_{i...} - \overline{y}_{..k.} + \overline{\overline{y}}) + (\overline{y}_{.jk.} - \overline{y}_{.j..} - \overline{y}_{..k.} + \overline{\overline{y}}) \\ &+ (y_{ijk.} - \overline{y}_{ij..} - \overline{y}_{i.k.} - \overline{y}_{.jk.} + \overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - \overline{\overline{y}}) \\ &+ (y_{ijkp}-\overline{y}_{ijk.}) \end{split}\end{displaymath} |
- | 양변을 제곱한 후에 모든   $$i, \ j, \ k, \ p$$ 에 대하여 합하면 아래의 등식을 얻을 수 있다. | + | 양변을 제곱한 후에 모든 i, j, k, p에 대하여 합하면 아래의 등식을 얻을 수 있다. |
- | \begin{displaymath}\begin{split} \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i...} - \overline{\overline{y}})^{2} + \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.j..} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{..k.} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..} - \overline{y}_{i...} - \overline{y}_{.j..} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.} - \overline{y}_{i...} - \overline{y}_{..k.} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.} - \overline{y}_{.j..} - \overline{y}_{..k.} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.} - \overline{y}_{ij..} - \overline{y}_{i.k.} - \overline{y}_{.jk.} + \overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{y}_{ijk.})^{2} \end{split}\end{displaymath} | + | \begin{displaymath}\begin{split} \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i...} - \overline{\overline{y}})^{2} + \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.j..} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{..k.} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..} - \overline{y}_{i...} - \overline{y}_{.j..} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.} - \overline{y}_{i...} - \overline{y}_{..k.} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.} - \overline{y}_{.j..} - \overline{y}_{..k.} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.} - \overline{y}_{ij..} - \overline{y}_{i.k.} - \overline{y}_{.jk.} + \overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{y}_{ijk.})^{2} \end{split}\end{displaymath} |
- | 위 식에서 왼쪽 항은 총변동 $$S_{T}$$ 이고, 오른쪽 항은 차례대로   $$A$$ 의 [변동],   $$B$$ 의 [변동],   $$C$$ 의 [변동],   $$A, \ B$$ 의 [교호작용]의 변동,   $$A, \ C$$ 의 [교호작용]의 변동,   $$B, \ C$$ 의 [교호작용]의 변동,   $$A, \ B, \ C$$ 의 [교호작용]의 변동, [오차변동]인   $$S_{A}$$ , $$S_{B}$$ , $$S_{C}$$ , $$S_{A \times B}$$ , $$S_{A \times C}$$ , $$S_{B \times C}$$ , $$S_{A \times B \times C}$$ , $$S_{E}$$ 가 된다. | + | 위 식에서 왼쪽 항은 총변동 ST이고, 오른쪽 항은 차례대로 A의 [[변동]], B의 [[변동]], C의 [[변동]], A, B의 [[교호작용]]의 변동, A, C의 [[교호작용]]의 변동, B, C의 [[교호작용]]의 [[변동]], A, B, C의 [[교호작용]]의 변동, [[오차변동]]인 SA, SB, SC, SA×B, SA×C, SB×C, SA×B×C, SE가 된다. |
+ | \begin{displaymath}\begin{split} S_{T} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}y_{ijkp}^{ \ 2} - CT \end{split}\end{displaymath} | ||
- | $$\begin{displaymath}\begin{split} S_{T} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}y_{ijkp}^{ \ 2} - CT \end{split}\end{displaymath}$$ | + | $$\begin{displaymath}\begin{split} S_{A} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{i...}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\frac{T_{i...}^{ \ 2}}{mnr}-CT \end{split}\end{displaymath}$$ |
- | $$\begin{displaymath}\begin{split} S_{A} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{i...}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\frac{T_{i...}^{ \ 2}}{mnr}-CT \end{split}\end{displaymath}$$ | + | $$\begin{displaymath}\begin{split} S_{B} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{.j..}-\overline{\overline{y}})^{2} \\ &= \sum_{j=1}^{m}\frac{T_{.j..}^{ \ 2}}{lnr}-CT \end{split}\end{displaymath}$$ |
- | $$\begin{displaymath}\begin{split} S_{B} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{.j..}-\overline{\overline{y}})^{2} \\ &= \sum_{j=1}^{m}\frac{T_{.j..}^{ \ 2}}{lnr}-CT \end{split}\end{displaymath}$$ | + | $$\begin{displaymath}\begin{split} S_{C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{..k.}-\overline{\overline{y}})^{2} \\ &= \sum_{k=1}^{n}\frac{T_{..k.}^{ \ 2}}{lmr}-CT \end{split}\end{displaymath}$$ |
- | $$\begin{displaymath}\begin{split} S_{C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{..k.}-\overline{\overline{y}})^{2} \\ &= \sum_{k=1}^{n}\frac{T_{..k.}^{ \ 2}}{lmr}-CT \end{split}\end{displaymath}$$ | + | $$\begin{displaymath}\begin{split} S_{A \times B} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..}-\overline{y}_{i...}-\overline{y}_{.j..}+\overline{\overline{y}})^{2} \\ &= S_{AB} - S_{A} - S_{B} \end{split}\end{displaymath}$$ |
- | $$\begin{displaymath}\begin{split} S_{A \times B} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..}-\overline{y}_{i...}-\overline{y}_{.j..}+\overline{\overline{y}})^{2} \\ &= S_{AB} - S_{A} - S_{B} \end{split}\end{displaymath}$$ | + | $$\begin{displaymath}\begin{split} S_{AB} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m} \frac{T_{ij..}^{ \ 2}}{nr} -CT \end{split}\end{displaymath}$$ |
- | $$\begin{displaymath}\begin{split} S_{AB} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m} \frac{T_{ij..}^{ \ 2}}{nr} -CT \end{split}\end{displaymath}$$ | + | $$\begin{displaymath}\begin{split} S_{A \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.}-\overline{y}_{i...}-\overline{y}_{..k.}+\overline{\overline{y}})^{2} \\ &= S_{AC} - S_{A} - S_{C} \end{split}\end{displaymath}$$ |
- | $$\begin{displaymath}\begin{split} S_{A \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.}-\overline{y}_{i...}-\overline{y}_{..k.}+\overline{\overline{y}})^{2} \\ &= S_{AC} - S_{A} - S_{C} \end{split}\end{displaymath}$$ | + | $$\begin{displaymath}\begin{split} S_{AC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{k=1}^{n} \frac{T_{i.k.}^{ \ 2}}{mr} -CT \end{split}\end{displaymath}$$ |
- | $$\begin{displaymath}\begin{split} S_{AC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{k=1}^{n} \frac{T_{i.k.}^{ \ 2}}{mr} -CT \end{split}\end{displaymath}$$ | + | $$\begin{displaymath}\begin{split} S_{B \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.}-\overline{y}_{.j..}-\overline{y}_{..k.}+\overline{\overline{y}})^{2} \\ &= S_{BC} - S_{B} - S_{C} \end{split}\end{displaymath}$$ |
- | $$\begin{displaymath}\begin{split} S_{B \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.}-\overline{y}_{.j..}-\overline{y}_{..k.}+\overline{\overline{y}})^{2} \\ &= S_{BC} - S_{B} - S_{C} \end{split}\end{displaymath}$$ | + | $$\begin{displaymath}\begin{split} S_{BC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.}-\overline{\overline{y}})^{2} \\ &= \sum_{j=1}^{m}\sum_{k=1}^{n} \frac{T_{.jk.}^{ \ 2}}{lr} -CT \end{split}\end{displaymath}$$ |
- | $$\begin{displaymath}\begin{split} S_{BC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.}-\overline{\overline{y}})^{2} \\ &= \sum_{j=1}^{m}\sum_{k=1}^{n} \frac{T_{.jk.}^{ \ 2}}{lr} -CT \end{split}\end{displaymath}$$ | + | $$\begin{displaymath}\begin{split} S_{A \times B \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.}-\overline{y}_{ij..}-\overline{y}_{i.k.}-\overline{y}_{.jk.}+\overline{y}_{i...}+\overline{y}_{.j..}+\overline{y}_{..k.}-\overline{\overline{y}})^{2} \\ &= S_{ABC}-(S_{A}+S_{B}+S_{C}+S_{A \times B}+S_{A \times C}+S_{B \times C}) \end{split}\end{displaymath}$$ |
- | $$\begin{displaymath}\begin{split} S_{A \times B \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.}-\overline{y}_{ij..}-\overline{y}_{i.k.}-\overline{y}_{.jk.}+\overline{y}_{i...}+\overline{y}_{.j..}+\overline{y}_{..k.}-\overline{\overline{y}})^{2} \\ &= S_{ABC}-(S_{A}+S_{B}+S_{C}+S_{A \times B}+S_{A \times C}+S_{B \times C}) \end{split}\end{displaymath}$$ | + | $$\begin{displaymath}\begin{split} S_{ABC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\frac{T_{ijk.}^{ \ 2}}{r} -CT \end{split}\end{displaymath}$$ |
- | \begin{displaymath}\begin{split} S_{ABC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\frac{T_{ijk.}^{ \ 2}}{r} -CT \end{split}\end{displaymath} | + | \begin{displaymath}\begin{split} S_{E} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} \\ &= S_{T} - S_{ABC} \end{split}\end{displaymath} |
- | + | ===== 자유도 ===== | |
- | \begin{displaymath}\begin{split} S_{E} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} \\ &= S_{T} - S_{ABC} \end{split}\end{displaymath} | + | |
- | ---- | + | |
- | ===== [자유도] ===== | + | |
νA=l−1 | νA=l−1 | ||
줄 175: | 줄 150: | ||
νT=lmnr−1=N−1 | νT=lmnr−1=N−1 | ||
- | ---- | + | ===== 평균제곱 ===== |
- | ===== [평균제곱] ===== | + | |
VA=SAνA | VA=SAνA | ||
줄 192: | 줄 166: | ||
VE=SEνE | VE=SEνE | ||
- | ---- | + | ===== 평균제곱의 기대값 ===== |
- | ===== [평균제곱의 기대값] ===== | + | |
E(VA)=σ 2E+mnrσ 2A | E(VA)=σ 2E+mnrσ 2A | ||
줄 209: | 줄 182: | ||
E(VE)=σ 2E | E(VE)=σ 2E | ||
- | ---- | ||
===== 분산분석표 ===== | ===== 분산분석표 ===== | ||
- | || '''[요인]''' || '''[제곱합]''' $SS$ || '''[자유도]''' $DF$ || '''[평균제곱]''' $MS||E(MS)||F0$ || '''기각치''' || '''[순변동]''' $S´$ || '''[기여율]''' $\rho$ || | + | ^ [[요인]] ^ [[제곱합]]\\ SS ^ [[자유도]]\\ DF ^ [[평균제곱]]\\ MS ^ E(MS) ^ F_{0} ^ [[기각치]] ^ [[순변동]]\\ S\acute{} ^ [[기여율]]\\ \rho | |
- | |||||||||||||||||| || | + | | A | S_{_{A}} | \nu_{_{A}}=l-1 | V_{_{A}}=S_{_{A}}/\nu_{_{A}} | \sigma_{_{E}}^{ \ 2}+mnr \ \sigma_{_{A}}^{2} | V_{_{A}}/V_{_{E}} | F_{1-\alpha}(\nu_{_{A}} \ , \ \nu_{_{E}}) | S_{_{A}}\acute{} | S_{_{A}}\acute{}/S_{_{T}} | |
- | || A || S_{_{A}} || \nu_{_{A}}=l-1 || V_{_{A}}=S_{_{A}}/\nu_{_{A}} || \sigma_{_{E}}^{ \ 2}+mnr \ \sigma_{_{A}}^{2} || V_{_{A}}/V_{_{E}} || F_{1-\alpha}(\nu_{_{A}} \ , \ \nu_{_{E}}) || S_{_{A}}\acute{} || S_{_{A}}\acute{}/S_{_{T}} || | + | | B | S_{_{B}} | \nu_{_{B}}=m-1 | V_{_{B}}=S_{_{B}}/\nu_{_{B}} | \sigma_{_{E}}^{ \ 2}+lnr \ \sigma_{_{B}}^{2} | V_{_{B}}/V_{_{E}} | F_{1-\alpha}(\nu_{_{B}} \ , \ \nu_{_{E}}) | S_{_{B}}\acute{} | S_{_{B}}\acute{}/S_{_{T}} | |
- | || B || S_{_{B}} || \nu_{_{B}}=m-1 || V_{_{B}}=S_{_{B}}/\nu_{_{B}} || \sigma_{_{E}}^{ \ 2}+lnr \ \sigma_{_{B}}^{2} || V_{_{B}}/V_{_{E}} || F_{1-\alpha}(\nu_{_{B}} \ , \ \nu_{_{E}}) || S_{_{B}}\acute{} || S_{_{B}}\acute{}/S_{_{T}} || | + | | C | S_{_{C}} | \nu_{_{C}}=n-1 | V_{_{C}}=S_{_{C}}/\nu_{_{C}} | \sigma_{_{E}}^{ \ 2}+lmr \ \sigma_{_{C}}^{2} | V_{_{C}}/V_{_{E}} | F_{1-\alpha}(\nu_{_{C}} \ , \ \nu_{_{E}}) | S_{_{C}}\acute{} | S_{_{C}}\acute{}/S_{_{T}} | |
- | || C || S_{_{C}} || \nu_{_{C}}=n-1 || V_{_{C}}=S_{_{C}}/\nu_{_{C}} || \sigma_{_{E}}^{ \ 2}+lmr \ \sigma_{_{C}}^{2} || V_{_{C}}/V_{_{E}} || F_{1-\alpha}(\nu_{_{C}} \ , \ \nu_{_{E}}) || S_{_{C}}\acute{} || S_{_{C}}\acute{}/S_{_{T}} || | + | | A \times B | S_{_{A \times B}} | \nu_{_{A \times B}}=(l-1)(m-1) | V_{_{A \times B}}=S_{_{A \times B}}/\nu_{_{A \times B}} | \sigma_{_{E}}^{ \ 2}+nr \ \sigma_{_{A \times B}}^{2} | V_{_{A \times B}}/V_{_{E}} | F_{1-\alpha}(\nu_{_{A \times B}} \ , \ \nu_{_{E}}) | S_{_{A \times B}}\acute{} | S_{_{A \times B}}\acute{}/S_{_{T}} | |
- | || A \times B || S_{_{A \times B}} || \nu_{_{A \times B}}=(l-1)(m-1) || V_{_{A \times B}}=S_{_{A \times B}}/\nu_{_{A \times B}} || \sigma_{_{E}}^{ \ 2}+nr \ \sigma_{_{A \times B}}^{2} || V_{_{A \times B}}/V_{_{E}} || F_{1-\alpha}(\nu_{_{A \times B}} \ , \ \nu_{_{E}}) || S_{_{A \times B}}\acute{} || S_{_{A \times B}}\acute{}/S_{_{T}} || | + | | A \times C | S_{_{A \times C}} | \nu_{_{A \times C}}=(l-1)(n-1) | V_{_{A \times C}}=S_{_{A \times C}}/\nu_{_{A \times C}} | \sigma_{_{E}}^{ \ 2}+mr \ \sigma_{_{A \times C}}^{2} | V_{_{A \times C}}/V_{_{E}} | F_{1-\alpha}(\nu_{_{A \times C}} \ , \ \nu_{_{E}}) | S_{_{A \times C}}\acute{} | S_{_{A \times C}}\acute{}/S_{_{T}} | |
- | || A \times C || S_{_{A \times C}} || \nu_{_{A \times C}}=(l-1)(n-1) || V_{_{A \times C}}=S_{_{A \times C}}/\nu_{_{A \times C}} || \sigma_{_{E}}^{ \ 2}+mr \ \sigma_{_{A \times C}}^{2} || V_{_{A \times C}}/V_{_{E}} || F_{1-\alpha}(\nu_{_{A \times C}} \ , \ \nu_{_{E}}) || S_{_{A \times C}}\acute{} || S_{_{A \times C}}\acute{}/S_{_{T}} || | + | | B \times C | S_{_{B \times C}} | \nu_{_{B \times C}}=(m-1)(n-1) | V_{_{B \times C}}=S_{_{B \times C}}/\nu_{_{B \times C}} | \sigma_{_{E}}^{ \ 2}+lr \ \sigma_{_{B \times C}}^{2} | V_{_{B \times C}}/V_{_{E}} | F_{1-\alpha}(\nu_{_{B \times C}} \ , \ \nu_{_{E}}) | S_{_{B \times C}}\acute{} | S_{_{B \times C}}\acute{}/S_{_{T}} | |
- | || B \times C || S_{_{B \times C}} || \nu_{_{B \times C}}=(m-1)(n-1) || V_{_{B \times C}}=S_{_{B \times C}}/\nu_{_{B \times C}} || \sigma_{_{E}}^{ \ 2}+lr \ \sigma_{_{B \times C}}^{2} || V_{_{B \times C}}/V_{_{E}} || F_{1-\alpha}(\nu_{_{B \times C}} \ , \ \nu_{_{E}}) || S_{_{B \times C}}\acute{} || S_{_{B \times C}}\acute{}/S_{_{T}} || | + | | A \times B \times C | S_{_{A \times B \times C}} | \nu_{_{A \times B \times C}}=(l-1)(m-1)(n-1) | V_{_{A \times B \times C}}=S_{_{A \times B \times C}}/\nu_{_{A \times B \times C}} | \sigma_{_{E}}^{ \ 2}+r \ \sigma_{_{A \times B \times C}}^{ \ 2} | V_{_{A \times B \times C}}/V_{_{E}} | F_{1-\alpha}(\nu_{_{A \times B \times C}} \ , \ \nu_{_{E}}) | S_{_{A \times B \times C}}\acute{} | S_{_{A \times B \times C}}\acute{}/S_{_{T}} | |
- | || A \times B \times C || S_{_{A \times B \times C}} || \nu_{_{A \times B \times C}}=(l-1)(m-1)(n-1) || V_{_{A \times B \times C}}=S_{_{A \times B \times C}}/\nu_{_{A \times B \times C}} || \sigma_{_{E}}^{ \ 2}+r \ \sigma_{_{A \times B \times C}}^{ \ 2} || V_{_{A \times B \times C}}/V_{_{E}} || F_{1-\alpha}(\nu_{_{A \times B \times C}} \ , \ \nu_{_{E}}) || S_{_{A \times B \times C}}\acute{} || S_{_{A \times B \times C}}\acute{}/S_{_{T}} || | + | | E | S_{_{E}} | \nu_{_{E}}=lmn(r-1) | V_{_{E}}=S_{_{E}}/\nu_{_{E}} | \sigma_{_{E}}^{ \ 2} | | | S_{_{E}}\acute{} | S_{_{E}}\acute{}/S_{_{T}} | |
- | || E || S_{_{E}} || \nu_{_{E}}=lmn(r-1) || V_{_{E}}=S_{_{E}}/\nu_{_{E}} || \sigma_{_{E}}^{ \ 2} || || || S_{_{E}}\acute{} || S_{_{E}}\acute{}/S_{_{T}} || | + | | T | S_{_{T}} | \nu_{_{T}}=lmnr-1 | | | | | S_{_{T}} | 1 | |
- | |||||||||||||||||| || | + | ===== 분산분석 ===== |
- | || T || S_{_{T}} || \nu_{_{T}}=lmnr-1 || || || || || S_{_{T}} || 1 || | + | [[인자]] A에 대한 [[분산분석]] |
- | ---- | + | |
- | ===== [분산분석] ===== | + | |
- | 인자   $$A$$ 에 대한 [분산분석] | + | |
- | F_{0}=\frac{V_{_{A}}}{V_{_{E}}} | + | * $$F_{0}=\frac{V_{_{A}}}{V_{_{E}}}$$ |
+ | |||
+ | [[기각역]] : $F_{0} > F_{1-\alpha}(\nu_{_{A}},\nu_{_{E}})$ | ||
- | [기각역] :   F_{0} > F_{1-\alpha}(\nu_{_{A}},\nu_{_{E}}) | ||
---- | ---- | ||
- | 인자   $$B$$ 에 대한 [분산분석] | + | [[인자]] B에 대한 [[분산분석]] |
- | F_{0}=\frac{V_{_{B}}}{V_{_{E}}} | + | * $$F_{0}=\frac{V_{_{B}}}{V_{_{E}}}$$ |
+ | |||
+ | [[기각역]] : $F_{0} > F_{1-\alpha}(\nu_{_{B}},\nu_{_{E}})$ | ||
- | [기각역] :   F_{0} > F_{1-\alpha}(\nu_{_{B}},\nu_{_{E}}) | ||
---- | ---- | ||
- | 인자   $$C$$ 에 대한 [분산분석] | + | [[인자]] C에 대한 [[분산분석]] |
+ | |||
+ | * F_{0}=\frac{V_{_{C}}}{V_{_{E}}} | ||
- | $$F_{0}=\frac{V_{_{C}}}{V_{_{E}}}$$ | + | [[기각역]] : $F_{0} > F_{1-\alpha}(\nu_{_{C}},\nu_{_{E}})$ |
- | [기각역] :   F_{0} > F_{1-\alpha}(\nu_{_{C}},\nu_{_{E}}) | ||
---- | ---- | ||
- | 인자   $$A , \ B$$ 의 [교호작용] 대한 [분산분석] | + | [[인자]] A , \ B의 [[교호작용]]에 대한 [[분산분석]] |
- | F_{0}=\frac{V_{_{A \times B}}}{V_{E}} | + | * $$F_{0}=\frac{V_{_{A \times B}}}{V_{E}}$$ |
+ | |||
+ | [[기각역]] : $F_{0} > F_{1-\alpha}(\nu_{_{A \times B}},\nu_{_{E}})$ | ||
- | [기각역] :   F_{0} > F_{1-\alpha}(\nu_{_{A \times B}},\nu_{_{E}}) | ||
---- | ---- | ||
- | 인자   $$A , \ C$$ 의 [교호작용] 대한 [분산분석] | + | [[인자]] A , \ C의 [[교호작용]]에 대한 [[분산분석]] |
- | F_{0}=\frac{V_{_{A \times C}}}{V_{E}} | + | * $$F_{0}=\frac{V_{_{A \times C}}}{V_{E}}$$ |
+ | |||
+ | [[기각역]] : $F_{0} > F_{1-\alpha}(\nu_{_{A \times C}},\nu_{_{E}})$ | ||
- | [기각역] :   F_{0} > F_{1-\alpha}(\nu_{_{A \times C}},\nu_{_{E}}) | ||
---- | ---- | ||
- | 인자   $$B , \ C$$ 의 [교호작용] 대한 [분산분석] | + | [[인자]] B , \ C의 [[교호작용]]에 대한 [[분산분석]] |
- | F_{0}=\frac{V_{B \times C}}{V_{E}} | + | * $$F_{0}=\frac{V_{B \times C}}{V_{E}}$$ |
+ | |||
+ | [[기각역]] : $F_{0} > F_{1-\alpha}(\nu_{_{B \times C}},\nu_{_{E}})$ | ||
- | [기각역] :   F_{0} > F_{1-\alpha}(\nu_{_{B \times C}},\nu_{_{E}}) | ||
---- | ---- | ||
- | 인자   $$A , \ B , \ C$$ 의 [교호작용] 대한 [분산분석] | + | [[인자]] A , \ B , \ C의 [[교호작용]]에 대한 [[분산분석]] |
- | F_{0}=\frac{V_{A \times B \times C}}{V_{E}}} | + | * F_{0}=\frac{V_{A \times B \times C}}{V_{E}}} |
- | [기각역] :   $F_{0} > F_{1-\alpha}(\nu_{A \times B \times C},\nu_{_{E}})$ | + | [[기각역]] : F_{0} > F_{1-\alpha}(\nu_{A \times B \times C},\nu_{_{E}}) |
- | ---- | + | |
===== 각 수준의 모평균의 추정 (주효과만이 유의한 경우) ===== | ===== 각 수준의 모평균의 추정 (주효과만이 유의한 경우) ===== | ||
주효과인 [[인자]] A, B, C만이 유의한 경우 [[교호작용]]들이 모두 오차항에 [[풀링]]되어 버린다. | 주효과인 [[인자]] A, B, C만이 유의한 경우 [[교호작용]]들이 모두 오차항에 [[풀링]]되어 버린다. |