meta data for this page
차이
문서의 선택한 두 판 사이의 차이를 보여줍니다.
양쪽 이전 판 이전 판 다음 판 | 이전 판 | ||
기하_분포 [2017/08/07 16:19] moonrepeat |
기하_분포 [2021/03/10 21:42] (현재) |
||
---|---|---|---|
줄 1: | 줄 1: | ||
====== 기하분포 (Geometric Distribution) ====== | ====== 기하분포 (Geometric Distribution) ====== | ||
===== 표기 ===== | ===== 표기 ===== | ||
- | X∼Geo(p) | + | * X∼Geo(p) |
- | + | * p∈[ 0 , 1 ] | |
- | + | ||
- | p∈[ 0 , 1 ] | + | |
===== 받침 ===== | ===== 받침 ===== | ||
x∈{ 0 , 1 , 2 , ⋯ } | x∈{ 0 , 1 , 2 , ⋯ } | ||
줄 10: | 줄 8: | ||
p(x)=p (1−p)x=p qx | p(x)=p (1−p)x=p qx | ||
- | + | <plot> | |
- | {{{#!gnuplot | + | |
set title "Geometric Distribution PMF" | set title "Geometric Distribution PMF" | ||
- | set size 0.7 | + | set size 1 |
set yrange [0:0.9] | set yrange [0:0.9] | ||
set xrange [-0.5:15.5] | set xrange [-0.5:15.5] | ||
줄 25: | 줄 22: | ||
f(x+0.5,0.5) title "Geo(0.5)" with steps, \ | f(x+0.5,0.5) title "Geo(0.5)" with steps, \ | ||
f(x+0.5,0.8) title "Geo(0.8)" with steps | f(x+0.5,0.8) title "Geo(0.8)" with steps | ||
- | }}} | + | </plot> |
===== 누적분포함수 ===== | ===== 누적분포함수 ===== | ||
F(x)=1−(1−p)x+1=1−qx+1 | F(x)=1−(1−p)x+1=1−qx+1 | ||
- | + | <plot> | |
- | {{{#!gnuplot | + | |
set title "Geometric Distribution CDF" | set title "Geometric Distribution CDF" | ||
- | set size 0.7 | + | set size 1 |
set yrange [0:1.1] | set yrange [0:1.1] | ||
set xrange [-0.5:15.5] | set xrange [-0.5:15.5] | ||
줄 38: | 줄 34: | ||
set ylabel "F(x) | set ylabel "F(x) | ||
set format y "%.2f" | set format y "%.2f" | ||
- | set key 13.5,0.2 | ||
f(x,p) = 1-(1-p)**((int(x))+1) | f(x,p) = 1-(1-p)**((int(x))+1) | ||
줄 45: | 줄 40: | ||
f(x+0.5,0.5) title "Geo(0.5)" with steps, \ | f(x+0.5,0.5) title "Geo(0.5)" with steps, \ | ||
f(x+0.5,0.8) title "Geo(0.8)" with steps | f(x+0.5,0.8) title "Geo(0.8)" with steps | ||
- | }}} | + | </plot> |
===== 기대값 ===== | ===== 기대값 ===== | ||
E(X)=1−pp | E(X)=1−pp | ||
줄 60: | 줄 55: | ||
===== 원적률 ===== | ===== 원적률 ===== | ||
\mu'_{1} = \frac{1-p}{p} | \mu'_{1} = \frac{1-p}{p} | ||
- | |||
\mu'_{2} = \frac{(2-p)(1-p)}{p^{2}} | \mu'_{2} = \frac{(2-p)(1-p)}{p^{2}} | ||
- | |||
\mu'_{3} = \frac{(1-p) \left[ 6+(p-6)p \right] }{p^{3}} | \mu'_{3} = \frac{(1-p) \left[ 6+(p-6)p \right] }{p^{3}} | ||
- | |||
\mu'_{4} = \frac{(2-p)(1-p) \left[ 12+(p-12)p \right] }{p^{4}} | \mu'_{4} = \frac{(2-p)(1-p) \left[ 12+(p-12)p \right] }{p^{4}} | ||
+ | \mu'_{k} = p \ \mathrm{Li}_{-k} (1-p) | ||
- | \mu'_{k} = p \ \operatorname{Li}_{ \ -k} (1-p) | + | * 단, $\mathrm{Li}_{n} (z)$는 ??함수(Polylogarithm)이다. |
- | + | ||
- | + | ||
- | + | ||
- | 단,   $$\operatorname{Li}_{n} (z)$$ 는 ??함수(Polylogarithm)이다. | + | |
===== 중심적률 ===== | ===== 중심적률 ===== | ||
\mu_{2} = \frac{1-p}{p^{2}} | \mu_{2} = \frac{1-p}{p^{2}} | ||
- | |||
\mu_{3} = \frac{(p-1)(p-2)}{p^{3}} | \mu_{3} = \frac{(p-1)(p-2)}{p^{3}} | ||
- | |||
\mu_{4} = \frac{(p-1)(-p^{2} +9p -9}{p^{4}} | \mu_{4} = \frac{(p-1)(-p^{2} +9p -9}{p^{4}} | ||
- | |||
\mu_{k} = p \ \Phi \left( \ 1-p \ , \ -k \ , \ \frac{p-1}{p} \ \right) | \mu_{k} = p \ \Phi \left( \ 1-p \ , \ -k \ , \ \frac{p-1}{p} \ \right) | ||
- | + | * 단, \Phi ( \ z \ , \ s \ , \ a \ ) 는 ??함수(Lerch Transcendent)이다. | |
- | + | ||
- | 단,   $$\Phi ( \ z \ , \ s \ , \ a \ )$$ 는 ??함수(Lerch Transcendent)이다. | + | |
===== 특성 ===== | ===== 특성 ===== | ||
- | i. [[무기억성]]을 가진다. | + | * [[무기억성]]을 가진다. |