meta data for this page
  •  

차이

문서의 선택한 두 판 사이의 차이를 보여줍니다.

차이 보기로 링크

정규분포 [2012/09/11 23:46]
moonrepeat
정규분포 [2021/03/10 21:42]
줄 1: 줄 1:
-====== 정규분포 (Normal Distribution) ====== 
-===== 정의 ===== 
-===== 기원 ===== 
- ​[[정규분포]]는 [[드무아브르]]가 1733년 쓴 글에서 특정 [[이항분포]]의 n이 클 때 그 분포의 근사치를 계산하는 것과 관련하여 처음 소개되었고 이 글은 그의 저서 《우연의 교의》 2판(1738년)에 다시 실렸다. 라플라스는 그의 저서 《확률론의 해석이론》(1812년)에서 이 결과를 확장하였고 이는 오늘날 드무아브르-라플라스의 정리로 알려져있다. 
  
- ​[[라플라스]]는 실험 오차를 분석하면서 [[정규분포]]를 사용했다. 1805년에는 [[르장드르]]가 매우 중요한 방법인 [[최소 제곱법]]을 도입했다. [[가우스]]는 이 방법을 1794년부터 사용해왔다고 주장했는데 1809년에는 실험 오차가 [[정규분포]]를 따른다는 가정하에 [[최소 제곱법]]을 이론적으로 엄밀히 정당화했다. 
- 
- 이 분포가 최초의 발견자 이름을 따지 않고 [[가우스 분포]]로 불리는 것은 과학적 발견은 그 최초 발견자의 이름을 따지 않는다는 스티글러의 명명법칙의 한 예이다. 
-===== 표기 ===== 
- ​[[확률변수]] $X$가 [[평균]] $\mu$, [[분산]] $\sigma^{2}$을 갖는 [[정규분포]]라 한다면 아래와 같이 표기 한다. 
- 
-  * $$ X \sim N(\mu , \sigma^{2})$$ 
-    * $$ \mu \in ( \ - \infty \ , \ \infty \ ) $$ 
-    * $$ \sigma^{2} \in ( \ 0 \ , \ \infty \ ) $$ 
-===== 받침 ===== 
- $$ x \in ( \ - \infty \ , \ \infty \ ) $$ 
-===== 확률밀도함수 ===== 
- $$ f(x) = \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[ - \frac{(x - \mu)^{2}}{2 \sigma^{2}} \right] $$ 
- 
-<​plot>​ 
- set title "​Normal Distribution PDF" 
- set size 1 
- set xrange [-5:5] 
- set yrange [0:1] 
- set format x "​%.1f"​ 
- set format y "​%.2f"​ 
- set xlabel "​x"​ 
- set ylabel "​f(x)"​ 
- 
- ​f(x,​y,​z) = (1/​(sqrt(2*pi)*sqrt(z)))*exp(-((x-y)**2)/​(2*z)) ​ 
- 
- plot f(x,0,0.2) title "​N(0,​0.2)",​ \ 
-  f(x,0,1.0) title "​N(0,​1.0)",​ \ 
-  f(x,0,5.0) title "​N(0,​5.0)",​ \ 
-  f(x,-2,0.5) title "​N(-2,​0.5)"​ 
-</​plot>​ 
-===== 누적분포함수 ===== 
- $$ F(x) = \frac{1}{2} \left[ 1 + \mathrm{erf} \left( \frac{x - \mu}{\sigma \sqrt{2}} \right) \right] $$ 
- 
-  * 단, $\mathrm{erf}(x)$ 는 [[오차함수]] 
- 
-<​plot>​ 
- set title "​Normal Distribution CDF" 
- set size 1 
- set xrange [-5:5] 
- set yrange [0:1.1] 
- set format x "​%.1f"​ 
- set format y "​%.2f"​ 
- set xlabel "​x"​ 
- set ylabel "​F(x)"​ 
- 
- ​f(x,​y,​z) = norm((x-y)/​sqrt(z)) 
- 
- plot f(x,0,0.2) title "​N(0,​0.2)",​ \ 
-  f(x,0,1.0) title "​N(0,​1.0)",​ \ 
-  f(x,0,5.0) title "​N(0,​5.0)",​ \ 
-  f(x,-2,0.5) title "​N(-2,​0.5)"​ 
-</​plot>​ 
-===== 기대값 ===== 
- ​$$E(X)=\mu$$ 
-===== 중앙값 ===== 
- $$ Mdn = \mu $$ 
-===== 최빈값 ===== 
- $$ Mo = \mu $$ 
-===== 분산 ===== 
- ​$$Var(X)=\sigma^{2}$$ 
-===== 왜도 ===== 
- $$ \gamma_{1} = 0 $$ 
-===== 첨도 ===== 
- $$ \gamma_{2} = 0 $$ 
-===== 특성함수 ===== 
- $$ \phi \ (t) = \exp \left( \mu \ i \ t - \frac{\sigma^{2} t^{2}}{2} \right) $$ 
-===== 적률생성함수 ===== 
- $$ M(t) = \exp \left( \mu \ t + \frac{\sigma^{2} t^{2}}{2} \right) $$ 
- 
- $$ M'(t) = (\mu + \sigma^{2} t) \cdot \exp \left[ \mu t + \sigma^{2} t^{2} / 2 \right] $$ 
- 
- $$ M''​(t) = \left[ \sigma^{2} + (\mu + \sigma^{2} t)^{2} \right] \cdot \exp \left[ \mu t + \sigma^{2} t^{2} / 2 \right] $$ 
-===== 원적률 ===== 
- $$ \mu'​_{0} = 1 $$ 
- 
- $$ \mu'​_{1} = \mu $$ 
- 
- $$ \mu'​_{2} = \mu^{2} + \sigam^{2} $$ 
- 
- $$ \mu'​_{3} = \mu^{3} + 3 \mu \sigma^{2} $$ 
- 
- $$ \mu'​_{4} = \mu^{4} + 6 \mu^{2} \sigma^{2} + 3 \sigma^{4} $$ 
-===== 중심적률 ===== 
- $$ \mu_{1} = 0 $$ 
- 
- $$ \mu_{2} = \sigma^{2} $$ 
- 
- $$ \mu_{3} = 0 $$ 
- 
- $$ \mu_{4} = 3 \sigma^{4} $$ 
-===== 특징 ===== 
-  * [[재생성]]을 가진다. 
-    * $X_{i} \sim N(\mu_{i},​\sigma_{i}^{2})$이면 $\sum X_{i} \sim N(\sum \mu_{i},​\sum \sigma_{i}^{2})$이 성립한다. 
- 
-  * 만약 $X \sim N(\mu,​\sigma^{2})$이고 $a, \ c \ (c \neq 0)$가 [[상수]]이며,​ $Y=a+cX$라는 관계가 있으면 $Y \sim N(a + c \mu,c^{2} \sigma^{2})$과 같은 [[분포]]를 가진다. 
-===== 타 분포와의 관계 ===== 
-  * [[정규분포와 카이스퀘어 분포 관계]] 
-  * [[정규분포와 t분포 관계]] 
-  * [[이항분포를 정규분포로 근사]] 
-  * [[포아송분포를 정규분포로 근사]] 
- 
----- 
-  * [[표준정규분포]] 
-  * [[표준정규분포표]] 
-{{tag>​통계 확률분포 연속형분포}}