meta data for this page
  •  

차이

문서의 선택한 두 판 사이의 차이를 보여줍니다.

차이 보기로 링크

양쪽 이전 판 이전 판
다음 판
이전 판
삼원배치법_모수모형_반복있음 [2012/07/28 09:35]
moonrepeat [데이터 구조]
삼원배치법_모수모형_반복있음 [2021/03/10 21:42] (현재)
줄 26: 줄 26:
   * $p$ : 실험의 [[반복]] 수 $( p = 1,2, \cdots ,r )$   * $p$ : 실험의 [[반복]] 수 $( p = 1,2, \cdots ,r )$
 ===== 자료의 구조 ===== ===== 자료의 구조 =====
- ||<​|2> ​[인자] ​$$B$$ ||<​|2> ​[인자] ​$$C$$ |||||||| ​[인자] ​$$A$|| + [[인자]]\\ $B$  ​^ ​ [[인자]]\\ $C$  ​^ ​ [[인자]$A$  ||||  
- || $$A_{1}$$ ​|| $$A_{2}$$ ​|| $$\cdots$$ ​|| $$A_{l}$$ ​|+^:::​^:::​^  ​$$A_{1}$$ ​ ​^  ​$$A_{2}$$ ​ ​^  ​$$\cdots$$ ​ ​^  ​$$A_{l}$$ ​ 
- |||||||||||| || +^  ​$$B_{1}$$ ​ ​^  ​$$C_{1}$$ ​  $$y_{1111}$$ ​  $$y_{2111}$$ ​  $$\cdots$$ ​  $$y_{l111}$$ ​ |  
- ​||<​|10> ​$$B_{1}$$ ​||<​|3> ​$$C_{1}$$ |$$y_{1111}$$ |$$y_{2111}$$ |$$\cdots$$ |$$y_{l111}$$ ​|+^:::^::: $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​ 
- |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ ​|+^:::^::: $$y_{111r}$$ ​  $$y_{211r}$$ ​  $$\cdots$$ ​  $$y_{l11r}$$ ​ |  
- |$$y_{111r}$$ |$$y_{211r}$$ |$$\cdots$$ |$$y_{l11r}$$ ​|+^:::​^  ​$$C_{2}$$ ​  $$y_{1121}$$ ​  $$y_{2121}$$ ​  $$\cdots$$ ​  $$y_{l121}$$ ​ |  
- ||<​|3> ​$$C_{2}$$ |$$y_{1121}$$ |$$y_{2121}$$ |$$\cdots$$ |$$y_{l121}$$ ​|+^:::^::: $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​ |  
- |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ ​|+^:::^::: $$y_{112r}$$ ​  $$y_{212r}$$ ​  $$\cdots$$ ​  $$y_{l12r}$$ ​ |  
- |$$y_{112r}$$ |$$y_{212r}$$ |$$\cdots$$ |$$y_{l12r}$$ ​|+^:::​^  ​$$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​   ​ $$\vdots$$ ​ |  
- || $$\vdots$$ |$$\vdots$$ |$$\vdots$$ || || $$\vdots$$ ​|+^:::​^  ​$$C_{n}$$ ​  $$y_{11n1}$$ ​  $$y_{21n1}$$ ​  $$\cdots$$ ​  $$y_{l1n1}$$ ​ |  
- ||<​|3> ​$$C_{n}$$ |$$y_{11n1}$$ |$$y_{21n1}$$ |$$\cdots$$ |$$y_{l1n1}$$ ​|+^:::^::: $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​ |  
- |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ ​|+^:::^::: $$y_{11nr}$$ ​  $$y_{21nr}$$ ​  $$\cdots$$ ​  $$y_{l1nr}$$ ​ |  
- |$$y_{11nr}$$ |$$y_{21nr}$$ |$$\cdots$$ |$$y_{l1nr}$$ ​|+^  ​$$B_{2}$$ ​ ​^  ​$$C_{1}$$ ​  $$y_{1211}$$ ​  $$y_{2211}$$ ​  $$\cdots$$ ​  $$y_{l211}$$ ​ |  
- ||<​|10> ​$$B_{2}$$ ​||<​|3> ​$$C_{1}$$ |$$y_{1211}$$ |$$y_{2211}$$ |$$\cdots$$ |$$y_{l211}$$ ​|+^:::^::: $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​ |  
- |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ ​|+^:::^::: $$y_{121r}$$ ​  $$y_{221r}$$ ​  $$\cdots$$ ​  $$y_{l21r}$$ ​ |  
- |$$y_{121r}$$ |$$y_{221r}$$ |$$\cdots$$ |$$y_{l21r}$$ ​|+^:::​^  ​$$C_{2}$$ ​  $$y_{1221}$$ ​  $$y_{2221}$$ ​  $$\cdots$$ ​  $$y_{l221}$$ ​ |  
- ||<​|3> ​$$C_{2}$$ |$$y_{1221}$$ |$$y_{2221}$$ |$$\cdots$$ |$$y_{l221}$$ ​|+^:::^::: $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​ |  
- |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ ​|+^:::^::: $$y_{122r}$$ ​  $$y_{222r}$$ ​  $$\cdots$$ ​  $$y_{l22r}$$ ​ |  
- |$$y_{122r}$$ |$$y_{222r}$$ |$$\cdots$$ |$$y_{l22r}$$ ​|+^:::​^  ​$$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​   ​ $$\vdots$$ ​ |  
- || $$\vdots$$ |$$\vdots$$ |$$\vdots$$ || || $$\vdots$$ ​|+^:::​^  ​$$C_{n}$$ ​  $$y_{12n1}$$ ​  $$y_{22n1}$$ ​  $$\cdots$$ ​  $$y_{l2n1}$$ ​ |  
- ||<​|3> ​$$C_{n}$$ |$$y_{12n1}$$ |$$y_{22n1}$$ |$$\cdots$$ |$$y_{l2n1}$$ ​|+^:::^::: $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​ |  
- |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ ​|+^:::^::: $$y_{12nr}$$ ​  $$y_{22nr}$$ ​  $$\cdots$$ ​  $$y_{l2nr}$$ ​ |  
- |$$y_{12nr}$$ |$$y_{22nr}$$ |$$\cdots$$ |$$y_{l2nr}$$ ​|+^  ​$$\vdots$$ ​ ||  $$\vdots$$ ​ |||| 
- |||| $$\vdots$$ |||||||| ​$$\vdots$$ || +^  ​$$B_{m}$$ ​ ​^  ​$$C_{1}$$ ​  $$y_{1m11}$$ ​  $$y_{2m11}$$ ​  $$\cdots$$ ​  $$y_{lm11}$$ ​ |  
- ||<​|10> ​$$B_{m}$$ ​||<​|3> ​$$C_{1}$$ |$$y_{1m11}$$ |$$y_{2m11}$$ |$$\cdots$$ |$$y_{lm11}$$ ​|+^:::^::: $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​ |  
- |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ ​|+^:::^::: $$y_{1m1r}$$ ​  $$y_{2m1r}$$ ​  $$\cdots$$ ​  $$y_{lm1r}$$ ​ |  
- |$$y_{1m1r}$$ |$$y_{2m1r}$$ |$$\cdots$$ |$$y_{lm1r}$$ ​|+^:::​^  ​$$C_{2}$$ ​  $$y_{1m21}$$ ​  $$y_{2m21}$$ ​  $$\cdots$$ ​  $$y_{lm21}$$ ​ |  
- ||<​|3> ​$$C_{2}$$ |$$y_{1m21}$$ |$$y_{2m21}$$ |$$\cdots$$ |$$y_{lm21}$$ ​|+^:::^::: $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​ |  
- |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ ​|+^:::^::: $$y_{1m2r}$$ ​  $$y_{2m2r}$$ ​  $$\cdots$$ ​  $$y_{lm2r}$$ ​ |  
- |$$y_{1m2r}$$ |$$y_{2m2r}$$ |$$\cdots$$ |$$y_{lm2r}$$ ​|+^:::​^  ​$$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​   ​ $$\vdots$$ ​ |  
- || $$\vdots$$ |$$\vdots$$ |$$\vdots$$ || || $$\vdots$$ ​|+^:::​^  ​$$C_{n}$$ ​  $$y_{1mn1}$$ ​  $$y_{2mn1}$$ ​  $$\cdots$$ ​  $$y_{lmn1}$$ ​ |  
- ||<​|3> ​$$C_{n}$$ |$$y_{1mn1}$$ |$$y_{2mn1}$$ |$$\cdots$$ |$$y_{lmn1}$$ ​|+^:::^::: $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​ |  
- |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ |$$\vdots$$ ​|+^:::^::: $$y_{1mnr}$$ ​  $$y_{2mnr}$$ ​  $$\cdots$$ ​  $$y_{lmnr}$$ ​ 
- |$$y_{1mnr}$$ |$$y_{2mnr}$$ |$$\cdots$$ |$$y_{lmnr}$$ ​||+
  
-  $$AB$$ 2원표 + $AB$ 2원표 
-  ​||<​|2> ​[인자] ​$$B$$ |||||||| ​[인자] ​$$A$$ ||<​|2> ​합계 ​|+ [[인자]$B$  ​^ ​ [[인자]$A$  ​^^^^  ​합계 ​ |  
-  ​|| $$A_{1}$$ ​|| $$A_{2}$$ ​|| $$\cdots$$ ​|| $$A_{l}$$ ​|| +^:::^  ​$$A_{1}$$ ​ ​^  ​$$A_{2}$$ ​ ​^  ​$$\cdots$$ ​ ​^  ​$$A_{l}$$  ​^:::
-  |||||||||||| |+ ​$$B_{1}$$ ​  $$T_{11..}$$ ​  $$T_{21..}$$ ​  $$\cdots$$ ​  $$T_{l1..}$$ ​  $$T_{.1..}$$ ​ |  
-  ​|| $$B_{1}$$ |$$T_{11..}$$ |$$T_{21..}$$ |$$\cdots$$ |$$T_{l1..}$$ |$$T_{.1..}$$ ​|+ ​$$B_{2}$$ ​  $$T_{12..}$$ ​  $$T_{22..}$$ ​  $$\cdots$$ ​  $$T_{l2..}$$ ​  $$T_{.2..}$$ ​ |  
-  ​|| $$B_{2}$$ |$$T_{12..}$$ |$$T_{22..}$$ |$$\cdots$$ |$$T_{l2..}$$ |$$T_{.2..}$$ ​|+ ​$$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​   ​ $$\vdots$$ ​  $$\vdots$$ ​ |  
-  ​|| $$\vdots$$ |$$\vdots$$ |$$\vdots$$ || || $$\vdots$$ |$$\vdots$$ ​|+ ​$$B_{m}$$ ​  $$T_{1m..}$$ ​  $$T_{2m..}$$ ​  $$\cdots$$ ​  $$T_{lm..}$$ ​  $$T_{.m..}$$ ​ |  
-  ​|| $$B_{m}$$ |$$T_{1m..}$$ |$$T_{2m..}$$ |$$\cdots$$ |$$T_{lm..}$$ |$$T_{.m..}$$ ​|| + ​합계 ​ ​^  ​$$T_{1...}$$ ​ ​^  ​$$T_{2...}$$ ​ ​^  ​$$\cdots$$ ​ ​^  ​$$T_{l...}$$ ​ ​^  ​$$T$$  
-  |||||||||||| |+
-  ​|| 합계 ​|| $$T_{1...}$$ ​|| $$T_{2...}$$ ​|| $$\cdots$$ ​|| $$T_{l...}$$ ​|| $$T$$ ||+
  
-  $$AC$$ 2원표 + $AC$ 2원표 
-  ​||<​|2> ​[인자] ​$$C$$ |||||||| ​[인자] ​$$A$$ ||<​|2> ​합계 ​|+ [[인자]$C$  ​^ ​ [[인자]$A$  ​^^^^  ​합계 ​ |  
-  ​|| $$A_{1}$$ ​|| $$A_{2}$$ ​|| $$\cdots$$ ​|| $$A_{l}$$ ​|| +^:::^  ​$$A_{1}$$ ​ ​^  ​$$A_{2}$$ ​ ​^  ​$$\cdots$$ ​ ​^  ​$$A_{l}$$  ​^:::
-  |||||||||||| |+ ​$$C_{1}$$ ​  $$T_{1.1.}$$ ​  $$T_{2.1.}$$ ​  $$\cdots$$ ​  $$T_{l.1.}$$ ​  $$T_{..1.}$$ ​ |  
-  ​|| $$C_{1}$$ |$$T_{1.1.}$$ |$$T_{2.1.}$$ |$$\cdots$$ |$$T_{l.1.}$$ |$$T_{..1.}$$ ​|+ ​$$C_{2}$$ ​  $$T_{1.2.}$$ ​  $$T_{2.2.}$$ ​  $$\cdots$$ ​  $$T_{l.2.}$$ ​  $$T_{..2.}$$ ​ |  
-  ​|| $$C_{2}$$ |$$T_{1.2.}$$ |$$T_{2.2.}$$ |$$\cdots$$ |$$T_{l.2.}$$ |$$T_{..2.}$$ ​|+ ​$$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​   ​ $$\vdots$$ ​  $$\vdots$$ ​ |  
-  ​|| $$\vdots$$ |$$\vdots$$ |$$\vdots$$ || || $$\vdots$$ |$$\vdots$$ ​|+ ​$$C_{n}$$ ​  $$T_{1.n.}$$ ​  $$T_{2.n.}$$ ​  $$\cdots$$ ​  $$T_{l.n.}$$ ​  $$T_{..n.}$$ ​ |  
-  ​|| $$C_{n}$$ |$$T_{1.n.}$$ |$$T_{2.n.}$$ |$$\cdots$$ |$$T_{l.n.}$$ |$$T_{..n.}$$ ​|| + ​합계 ​ ​^  ​$$T_{1...}$$ ​ ​^  ​$$T_{2...}$$ ​ ​^  ​$$\cdots$$ ​ ​^  ​$$T_{l...}$$ ​ ​^  ​$$T$$  
-  |||||||||||| |+
-  ​|| 합계 ​|| $$T_{1...}$$ ​|| $$T_{2...}$$ ​|| $$\cdots$$ ​|| $$T_{l...}$$ ​|| $$T$$ ||+
  
-  $$BC$$ 2원표 + $BC$ 2원표 
-  ​||<​|2> ​[인자] ​$$C$$ |||||||| ​[인자] ​$$B$$ ||<​|2> ​합계 ​|+ [[인자]$C$  ​^ ​ [[인자]$B$  ​^^^^  ​합계 ​ |  
-  ​|| $$B_{1}$$ ​|| $$B_{2}$$ ​|| $$\cdots$$ ​|| $$B_{m}$$ ​|| +^:::^  ​$$B_{1}$$ ​ ​^  ​$$B_{2}$$ ​ ​^  ​$$\cdots$$ ​ ​^  ​$$B_{m}$$  ​^:::
-  |||||||||||| |+ ​$$C_{1}$$ ​  $$T_{.11.}$$ ​  $$T_{.21.}$$ ​  $$\cdots$$ ​  $$T_{.m1.}$$ ​  $$T_{..1.}$$ ​ |  
-  ​|| $$C_{1}$$ |$$T_{.11.}$$ |$$T_{.21.}$$ |$$\cdots$$ |$$T_{.m1.}$$ |$$T_{..1.}$$ ​|+ ​$$C_{2}$$ ​  $$T_{.12.}$$ ​  $$T_{.22.}$$ ​  $$\cdots$$ ​  $$T_{.m2.}$$ ​  $$T_{..2.}$$ ​ |  
-  ​|| $$C_{2}$$ |$$T_{.12.}$$ |$$T_{.22.}$$ |$$\cdots$$ |$$T_{.m2.}$$ |$$T_{..2.}$$ ​|+ ​$$\vdots$$ ​  $$\vdots$$ ​  $$\vdots$$ ​   ​ $$\vdots$$ ​  $$\vdots$$ ​ |  
-  ​|| $$\vdots$$ |$$\vdots$$ |$$\vdots$$ || || $$\vdots$$ |$$\vdots$$ ​|+ ​$$C_{n}$$ ​  $$T_{.1n.}$$ ​  $$T_{.2n.}$$ ​  $$\cdots$$ ​  $$T_{.mn.}$$ ​  $$T_{..n.}$$ ​ |  
-  ​|| $$C_{n}$$ |$$T_{.1n.}$$ |$$T_{.2n.}$$ |$$\cdots$$ |$$T_{.mn.}$$ |$$T_{..n.}$$ ​|| + ​합계 ​ ​^  ​$$T_{.1..}$$ ​ ​^  ​$$T_{.2..}$$ ​ ​^  ​$$\cdots$$ ​ ​^  ​$$T_{.m..}$$ ​ ​^  ​$$T$$  
-  |||||||||||| |+
-  ​|| 합계 ​|| $$T_{.1..}$$ ​|| $$T_{.2..}$$ ​|| $$\cdots$$ ​|| $$T_{.m..}$$ ​|| $$T$$ ||+
  
-   || $$T_{i...} = \sum_{j=1}^{m} \sum_{k=1}^{n} \sum_{p=1}^{r} y_{ijkp}$$ ​|| $$\overline{y}_{i...} = \frac{T_{i...}}{mnr}$$ ​|+| $$T_{i...} = \sum_{j=1}^{m} \sum_{k=1}^{n} \sum_{p=1}^{r} y_{ijkp}$$ | $$\overline{y}_{i...} = \frac{T_{i...}}{mnr}$$ | 
-   || $$T_{.j..} = \sum_{i=1}^{l} \sum_{k=1}^{n} \sum_{p=1}^{r} y_{ijkp}$$ ​|| $$\overline{y}_{.j..} = \frac{T_{.j..}}{lnr}$$ ​|+| $$T_{.j..} = \sum_{i=1}^{l} \sum_{k=1}^{n} \sum_{p=1}^{r} y_{ijkp}$$ | $$\overline{y}_{.j..} = \frac{T_{.j..}}{lnr}$$ | 
-   || $$T_{..k.} = \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{p=1}^{r} y_{ijkp}$$ ​|| $$\overline{y}_{..k.} = \frac{T_{..k.}}{lmr}$$ ​|+| $$T_{..k.} = \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{p=1}^{r} y_{ijkp}$$ | $$\overline{y}_{..k.} = \frac{T_{..k.}}{lmr}$$ | 
-   || $$T_{ij..} = \sum_{k=1}^{n} \sum_{p=1}^{r} y_{ijkp}$$ ​|| $$\overline{y}_{ij..} = \frac{T_{ij..}}{nr}$$ ​|+| $$T_{ij..} = \sum_{k=1}^{n} \sum_{p=1}^{r} y_{ijkp}$$ | $$\overline{y}_{ij..} = \frac{T_{ij..}}{nr}$$ | 
-   || $$T_{i.k.} = \sum_{j=1}^{m} \sum_{p=1}^{r} y_{ijkp}$$ ​|| $$\overline{y}_{i.k.} = \frac{T_{i.k.}}{mr}$$ ​|+| $$T_{i.k.} = \sum_{j=1}^{m} \sum_{p=1}^{r} y_{ijkp}$$ | $$\overline{y}_{i.k.} = \frac{T_{i.k.}}{mr}$$ | 
-   || $$T_{.jk.} = \sum_{i=1}^{l} \sum_{p=1}^{r} y_{ijkp}$$ ​|| $$\overline{y}_{.jk.} = \frac{T_{.jk.}}{lr}$$ ​|+| $$T_{.jk.} = \sum_{i=1}^{l} \sum_{p=1}^{r} y_{ijkp}$$ | $$\overline{y}_{.jk.} = \frac{T_{.jk.}}{lr}$$ | 
-   || $$T_{ijk.} = \sum_{p=1}^{r} y_{ijkp}$$ ​|| $$\overline{y}_{ijk.} = \frac{T_{ijk.}}{r}$$ ​|+| $$T_{ijk.} = \sum_{p=1}^{r} y_{ijkp}$$ | $$\overline{y}_{ijk.} = \frac{T_{ijk.}}{r}$$ | 
-   || $$T = \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \sum_{p=1}^{r} y_{ijkp}$$ ​|| $$\overline{\overline{y}} = \frac{T}{lmnr} = \frac{T}{N}$$ ​|+| $$T = \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \sum_{p=1}^{r} y_{ijkp}$$ | $$\overline{\overline{y}} = \frac{T}{lmnr} = \frac{T}{N}$$ | 
-   || $$N = lmnr$$ ​|| $$CT = \frac{T^{2}}{lmnr} = \frac{T^{2}}{N}$$ |+| $$N = lmnr$$ | $$CT = \frac{T^{2}}{lmnr} = \frac{T^{2}}{N}$$ | 
----- +===== 제곱합 ===== 
-===== [제곱합===== + ​개개의 데이터 $y_{ijkp}$와 총균 $\overline{\overline{y}}$의 차이는 다음과 같이 8부분으로 나뉘어진다.
- ​개개의 데이터&​nbsp&​nbsp $$y_{ijkp}$$ 와 총&​nbsp&​nbsp $$\overline{\overline{y}}$$ 의 차이는 다음과 같이 8부분으로 나뉘어진다.+
  
-  ​$$\begin{displaymath}\begin{split} (y_{ijkp}-\overline{\overline{y}}) &= (\overline{y}_{i...} - \overline{\overline{y}}) + (\overline{y}_{.j..} - \overline{\overline{y}}) + (\overline{y}_{..k.} - \overline{\overline{y}}) \\ &+ (\overline{y}_{ij..} - \overline{y}_{i...} - \overline{y}_{.j..} + \overline{\overline{y}}) + (\overline{y}_{i.k.} - \overline{y}_{i...} - \overline{y}_{..k.} + \overline{\overline{y}}) + (\overline{y}_{.jk.} - \overline{y}_{.j..} - \overline{y}_{..k.} + \overline{\overline{y}}) \\ &+ (y_{ijk.} - \overline{y}_{ij..} - \overline{y}_{i.k.} - \overline{y}_{.jk.} + \overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - \overline{\overline{y}}) \\ &+ (y_{ijkp}-\overline{y}_{ijk.}) \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} (y_{ijkp}-\overline{\overline{y}}) &= (\overline{y}_{i...} - \overline{\overline{y}}) + (\overline{y}_{.j..} - \overline{\overline{y}}) + (\overline{y}_{..k.} - \overline{\overline{y}}) \\ &+ (\overline{y}_{ij..} - \overline{y}_{i...} - \overline{y}_{.j..} + \overline{\overline{y}}) + (\overline{y}_{i.k.} - \overline{y}_{i...} - \overline{y}_{..k.} + \overline{\overline{y}}) + (\overline{y}_{.jk.} - \overline{y}_{.j..} - \overline{y}_{..k.} + \overline{\overline{y}}) \\ &+ (y_{ijk.} - \overline{y}_{ij..} - \overline{y}_{i.k.} - \overline{y}_{.jk.} + \overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - \overline{\overline{y}}) \\ &+ (y_{ijkp}-\overline{y}_{ijk.}) \end{split}\end{displaymath}$$
  
- ​양변을 제곱한 후에 모든&​nbsp&​nbsp $$i, \ j, \ k, \ p$$ 에 대하여 합하면 아래의 등식을 얻을 수 있다.+ ​양변을 제곱한 후에 모든 $i, \ j, \ k, \ p$에 대하여 합하면 아래의 등식을 얻을 수 있다.
  
-  ​$$\begin{displaymath}\begin{split} \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i...} - \overline{\overline{y}})^{2} + \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.j..} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{..k.} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..} - \overline{y}_{i...} - \overline{y}_{.j..} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.} - \overline{y}_{i...} - \overline{y}_{..k.} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.} - \overline{y}_{.j..} - \overline{y}_{..k.} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.} - \overline{y}_{ij..} - \overline{y}_{i.k.} - \overline{y}_{.jk.} + \overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{y}_{ijk.})^{2} \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i...} - \overline{\overline{y}})^{2} + \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.j..} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{..k.} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..} - \overline{y}_{i...} - \overline{y}_{.j..} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.} - \overline{y}_{i...} - \overline{y}_{..k.} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.} - \overline{y}_{.j..} - \overline{y}_{..k.} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.} - \overline{y}_{ij..} - \overline{y}_{i.k.} - \overline{y}_{.jk.} + \overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{y}_{ijk.})^{2} \end{split}\end{displaymath}$$
  
- 위 식에서 왼쪽 항은 총변동 ​$$S_{T}$$ 이고, 오른쪽 항은 차례대로&​nbsp&​nbsp $$A$$ 의 [변동],&​nbsp&​nbsp $$B$$ 의 [변동],&​nbsp&​nbsp $$C$$ 의 [변동],&​nbsp&​nbsp $$A, \ B$$ 의 [교호작용]의 변동,&​nbsp&​nbsp $$A, \ C$$ 의 [교호작용]의 변동,&​nbsp&​nbsp $$B, \ C$$ 의 [교호작용]의 변동,&​nbsp&​nbsp $$A, \ B, \ C$$ 의 [교호작용]의 변동, [오차변동]인&​nbsp&​nbsp $$S_{A}$$ , $$S_{B}$$ , $$S_{C}$$ , $$S_{A \times B}$$ , $$S_{A \times C}$$ , $$S_{B \times C}$$ , $$S_{A \times B \times C}$$ , $$S_{E}$$ 가 된다.+ 위 식에서 왼쪽 항은 총변동 $S_{T}$이고,​ 오른쪽 항은 차례대로 $A$의 ​[[변동]], $B$의 ​[[변동]], $C$의 ​[[변동]], $A, \ B$의 [[교호작용]]의 변동, $A, \ C$의 [[교호작용]]의 변동, $B, \ C$의 [[교호작용]]의 [[변동]], $A, \ B, \ C$의 [[교호작용]]의 변동, ​[[오차변동]]인 $S_{A}$, $S_{B}$, $S_{C}$, $S_{A \times B}$, $S_{A \times C}$, $S_{B \times C}$, $S_{A \times B \times C}$, $S_{E}$가 된다.
  
 + ​$$\begin{displaymath}\begin{split} S_{T} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}y_{ijkp}^{ \ 2} - CT \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{T} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}y_{ijkp}^{ \ 2} - CT \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{A} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{i...}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\frac{T_{i...}^{ \ 2}}{mnr}-CT \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{A} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{i...}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\frac{T_{i...}^{ \ 2}}{mnr}-CT \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{B} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{.j..}-\overline{\overline{y}})^{2} \\ &= \sum_{j=1}^{m}\frac{T_{.j..}^{ \ 2}}{lnr}-CT \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{B} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{.j..}-\overline{\overline{y}})^{2} \\ &= \sum_{j=1}^{m}\frac{T_{.j..}^{ \ 2}}{lnr}-CT \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{..k.}-\overline{\overline{y}})^{2} \\ &= \sum_{k=1}^{n}\frac{T_{..k.}^{ \ 2}}{lmr}-CT \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{..k.}-\overline{\overline{y}})^{2} \\ &​= ​\sum_{k=1}^{n}\frac{T_{..k.}^{ \ 2}}{lmr}-CT ​\end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{A \times B} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..}-\overline{y}_{i...}-\overline{y}_{.j..}+\overline{\overline{y}})^{2} \\ &​= ​S_{AB- S_{A- S_{B} \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{A \times B} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..}-\overline{y}_{i...}-\overline{y}_{.j..}+\overline{\overline{y}})^{2} \\ &S_{AB- S_{A- S_{B} \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{AB} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m\frac{T_{ij..}^\ 2}}{nr} -CT \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{AB} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m} ​\frac{T_{ij..}^{ 2}}{nr} -CT \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{A \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.}-\overline{y}_{i...}-\overline{y}_{..k.}+\overline{\overline{y}})^{2} \\ &= S_{AC- S_{A} - S_{C} \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{A \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.}-\overline{y}_{i...}-\overline{y}_{..k.}+\overline{\overline{y}})^{2} \\ &S_{AC- S_{A- S_{C} \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{AC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{k=1}^{n\frac{T_{i.k.}^\ 2}}{mr} -CT \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{AC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{k=1}^{n\frac{T_{i.k.}^\ 2}}{mr} -CT \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{B \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.}-\overline{y}_{.j..}-\overline{y}_{..k.}+\overline{\overline{y}})^{2} \\ &S_{BC- S_{B- S_{C} \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{B \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.}-\overline{y}_{.j..}-\overline{y}_{..k.}+\overline{\overline{y}})^{2} \\ &S_{BC- S_{B- S_{C} \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{BC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.}-\overline{\overline{y}})^{2} \\ &= \sum_{j=1}^{m}\sum_{k=1}^{n\frac{T_{.jk.}^\ 2}}{lr} -CT \end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{BC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.}-\overline{\overline{y}})^{2} \\ &​= ​\sum_{j=1}^{m}\sum_{k=1}^{n\frac{T_{.jk.}^{ \ 2}}{lr-CT \end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{A \times B \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.}-\overline{y}_{ij..}-\overline{y}_{i.k.}-\overline{y}_{.jk.}+\overline{y}_{i...}+\overline{y}_{.j..}+\overline{y}_{..k.}-\overline{\overline{y}})^{2} \\ &​= ​S_{ABC}-(S_{A}+S_{B}+S_{C}+S_{A \times B}+S_{\times C}+S_{B \times C}\end{split}\end{displaymath}$$
  
-  ​$$\begin{displaymath}\begin{split} S_{A \times B \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.}-\overline{y}_{ij..}-\overline{y}_{i.k.}-\overline{y}_{.jk.}+\overline{y}_{i...}+\overline{y}_{.j..}+\overline{y}_{..k.}-\overline{\overline{y}})^{2} \\ &= S_{ABC}-(S_{A}+S_{B}+S_{C}+S_{\times B}+S_{A \times C}+S_{B \times C}\end{split}\end{displaymath}$$+ $$\begin{displaymath}\begin{split} S_{ABC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\frac{T_{ijk.}^{ \ 2}}{r-CT \end{split}\end{displaymath}$$
  
-  $$\begin{displaymath}\begin{split} S_{ABC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\frac{T_{ijk.}^{ \ 2}}{r} -CT \end{split}\end{displaymath}$$ + ​$$\begin{displaymath}\begin{split} S_{E} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} \\ &= S_{T} - S_{ABC} \end{split}\end{displaymath}$$
- +
-  ​$$\begin{displaymath}\begin{split} S_{E} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} \\ &= S_{T} - S_{ABC} \end{split}\end{displaymath}$$ +
-----+
 ===== 자유도 ===== ===== 자유도 =====
  ​$$\nu_{A}=l-1$$  ​$$\nu_{A}=l-1$$