meta data for this page
  •  

차이

문서의 선택한 두 판 사이의 차이를 보여줍니다.

차이 보기로 링크

삼원배치법_모수모형_반복있음 [2012/07/26 22:56]
moonrepeat 새로 만듦
삼원배치법_모수모형_반복있음 [2021/03/10 21:42]
줄 1: 줄 1:
-====== 삼원배치법 (모수모형) (반복있음) ====== 
-===== 데이터 구조 ===== 
- ​[요인]&​nbsp&​nbsp $$A$$ 는 [모수인자] 
  
- ​[요인]&​nbsp&​nbsp $$B$$ 는 [모수인자] 
- 
- ​[요인]&​nbsp&​nbsp $$C$$ 는 [모수인자] 
- 
- 
-  $$ y_{ijkp} = \mu + a_{i} + b_{j} + c_{k} + (ab)_{ij} + (ac)_{ik} + (bc)_{jk} + (abc)_{ijk} + e_{ijkp} $$ 
- 
- 
-   ​$$y_{ijkp}$$ &​nbsp&​nbsp : &​nbsp&​nbsp $$A_{i}$$ 와&​nbsp&​nbsp $$B_{j}$$ &​nbsp&​nbsp그리고&​nbsp&​nbsp $$C_{k}$$ 에서 얻은&​nbsp&​nbsp $$p$$ 번째 [측정값] 
- 
-   ​$$\mu$$ &​nbsp&​nbsp : 실험전체의 [모평균] 
- 
-   ​$$a_{i}$$ &​nbsp&​nbsp : &​nbsp&​nbsp $$A_{i}$$ 가 주는 효과 
- 
-   ​$$b_{j}$$ &​nbsp&​nbsp : &​nbsp&​nbsp $$B_{j}$$ 가 주는 효과 
- 
-   ​$$c_{k}$$ &​nbsp&​nbsp : &​nbsp&​nbsp $$C_{k}$$ 가 주는 효과 
- 
-   ​$$(ab)_{ij}$$ &​nbsp&​nbsp : &​nbsp&​nbsp $$A_{i}$$ 와&​nbsp&​nbsp $$B_{j}$$ 의 [교호작용] 효과 
- 
-   ​$$(ac)_{ik}$$ &​nbsp&​nbsp : &​nbsp&​nbsp $$A_{i}$$ 와&​nbsp&​nbsp $$C_{k}$$ 의 [교호작용] 효과 
- 
-   ​$$(bc)_{jk}$$ &​nbsp&​nbsp : &​nbsp&​nbsp $$B_{j}$$ 와&​nbsp&​nbsp $$C_{k}$$ 의 [교호작용] 효과 
- 
-   ​$$(abc)_{ijk}$$ &​nbsp&​nbsp : &​nbsp&​nbsp $$A_{i}$$ 와&​nbsp&​nbsp $$B_{J}$$ &​nbsp&​nbsp그리고&​nbsp&​nbsp $$C_{k}$$ 의 [교호작용] 효과 
- 
-   ​$$e_{ijkp}$$ &​nbsp&​nbsp : &​nbsp&​nbsp $$A_{i}$$ 와&​nbsp&​nbsp $$B_{j}$$ &​nbsp&​nbsp그리고&​nbsp&​nbsp $$C_{k}$$ 에서 얻은&​nbsp&​nbsp $$p$$ 번째 [측정값]의 [오차] ​ ( $$e_{ijkp} \sim N(0, \sigma_{E}^{ \ 2})$$ 이고 서로 [독립]) 
- 
- 
-    $$i$$ &​nbsp&​nbsp : 인자&​nbsp&​nbsp $$A$$ 의 [수준] 수&​nbsp&​nbsp $$( i = 1,2, \cdots ,l )$$ 
- 
-    $$j$$ &​nbsp&​nbsp : 인자&​nbsp&​nbsp $$B$$ 의 [수준] 수&​nbsp&​nbsp $$( j = 1,2, \cdots ,m )$$ 
- 
-    $$k$$ &​nbsp&​nbsp : 인자&​nbsp&​nbsp $$C$$ 의 [수준] 수&​nbsp&​nbsp $$( k = 1,2, \cdots ,n )$$ 
- 
-    $$p$$ &​nbsp&​nbsp : 실험의 [반복] 수&​nbsp&​nbsp $$( p = 1,2, \cdots ,r )$$ 
----- 
-===== 자료의 구조 ===== 
- ​||<​|2>​ [인자] $$B$$ ||<​|2>​ [인자] $$C$$ |||||||| [인자] $$A$$ || 
- || $$A_{1}$$ || $$A_{2}$$ || $$\cdots$$ || $$A_{l}$$ || 
- ​|||||||||||| || 
- ​||<​|10>​ $$B_{1}$$ ||<​|3>​ $$C_{1}$$ || $$y_{1111}$$ || $$y_{2111}$$ || $$\cdots$$ || $$y_{l111}$$ || 
- || $$\vdots$$ || $$\vdots$$ || $$\vdots$$ || $$\vdots$$ || 
- || $$y_{111r}$$ || $$y_{211r}$$ || $$\cdots$$ || $$y_{l11r}$$ || 
- ​||<​|3>​ $$C_{2}$$ || $$y_{1121}$$ || $$y_{2121}$$ || $$\cdots$$ || $$y_{l121}$$ || 
- || $$\vdots$$ || $$\vdots$$ || $$\vdots$$ || $$\vdots$$ || 
- || $$y_{112r}$$ || $$y_{212r}$$ || $$\cdots$$ || $$y_{l12r}$$ || 
- || $$\vdots$$ || $$\vdots$$ || $$\vdots$$ || || $$\vdots$$ || 
- ​||<​|3>​ $$C_{n}$$ || $$y_{11n1}$$ || $$y_{21n1}$$ || $$\cdots$$ || $$y_{l1n1}$$ || 
- || $$\vdots$$ || $$\vdots$$ || $$\vdots$$ || $$\vdots$$ || 
- || $$y_{11nr}$$ || $$y_{21nr}$$ || $$\cdots$$ || $$y_{l1nr}$$ || 
- ​||<​|10>​ $$B_{2}$$ ||<​|3>​ $$C_{1}$$ || $$y_{1211}$$ || $$y_{2211}$$ || $$\cdots$$ || $$y_{l211}$$ || 
- || $$\vdots$$ || $$\vdots$$ || $$\vdots$$ || $$\vdots$$ || 
- || $$y_{121r}$$ || $$y_{221r}$$ || $$\cdots$$ || $$y_{l21r}$$ || 
- ​||<​|3>​ $$C_{2}$$ || $$y_{1221}$$ || $$y_{2221}$$ || $$\cdots$$ || $$y_{l221}$$ || 
- || $$\vdots$$ || $$\vdots$$ || $$\vdots$$ || $$\vdots$$ || 
- || $$y_{122r}$$ || $$y_{222r}$$ || $$\cdots$$ || $$y_{l22r}$$ || 
- || $$\vdots$$ || $$\vdots$$ || $$\vdots$$ || || $$\vdots$$ || 
- ​||<​|3>​ $$C_{n}$$ || $$y_{12n1}$$ || $$y_{22n1}$$ || $$\cdots$$ || $$y_{l2n1}$$ || 
- || $$\vdots$$ || $$\vdots$$ || $$\vdots$$ || $$\vdots$$ || 
- || $$y_{12nr}$$ || $$y_{22nr}$$ || $$\cdots$$ || $$y_{l2nr}$$ || 
- |||| $$\vdots$$ |||||||| $$\vdots$$ || 
- ​||<​|10>​ $$B_{m}$$ ||<​|3>​ $$C_{1}$$ || $$y_{1m11}$$ || $$y_{2m11}$$ || $$\cdots$$ || $$y_{lm11}$$ || 
- || $$\vdots$$ || $$\vdots$$ || $$\vdots$$ || $$\vdots$$ || 
- || $$y_{1m1r}$$ || $$y_{2m1r}$$ || $$\cdots$$ || $$y_{lm1r}$$ || 
- ​||<​|3>​ $$C_{2}$$ || $$y_{1m21}$$ || $$y_{2m21}$$ || $$\cdots$$ || $$y_{lm21}$$ || 
- || $$\vdots$$ || $$\vdots$$ || $$\vdots$$ || $$\vdots$$ || 
- || $$y_{1m2r}$$ || $$y_{2m2r}$$ || $$\cdots$$ || $$y_{lm2r}$$ || 
- || $$\vdots$$ || $$\vdots$$ || $$\vdots$$ || || $$\vdots$$ || 
- ​||<​|3>​ $$C_{n}$$ || $$y_{1mn1}$$ || $$y_{2mn1}$$ || $$\cdots$$ || $$y_{lmn1}$$ || 
- || $$\vdots$$ || $$\vdots$$ || $$\vdots$$ || $$\vdots$$ || 
- || $$y_{1mnr}$$ || $$y_{2mnr}$$ || $$\cdots$$ || $$y_{lmnr}$$ || 
- 
-  $$AB$$ 2원표 
-  ||<​|2>​ [인자] $$B$$ |||||||| [인자] $$A$$ ||<​|2>​ 합계 || 
-  || $$A_{1}$$ || $$A_{2}$$ || $$\cdots$$ || $$A_{l}$$ || 
-  |||||||||||| || 
-  || $$B_{1}$$ || $$T_{11..}$$ || $$T_{21..}$$ || $$\cdots$$ || $$T_{l1..}$$ || $$T_{.1..}$$ || 
-  || $$B_{2}$$ || $$T_{12..}$$ || $$T_{22..}$$ || $$\cdots$$ || $$T_{l2..}$$ || $$T_{.2..}$$ || 
-  || $$\vdots$$ || $$\vdots$$ || $$\vdots$$ || || $$\vdots$$ || $$\vdots$$ || 
-  || $$B_{m}$$ || $$T_{1m..}$$ || $$T_{2m..}$$ || $$\cdots$$ || $$T_{lm..}$$ || $$T_{.m..}$$ || 
-  |||||||||||| || 
-  || 합계 || $$T_{1...}$$ || $$T_{2...}$$ || $$\cdots$$ || $$T_{l...}$$ || $$T$$ || 
- 
-  $$AC$$ 2원표 
-  ||<​|2>​ [인자] $$C$$ |||||||| [인자] $$A$$ ||<​|2>​ 합계 || 
-  || $$A_{1}$$ || $$A_{2}$$ || $$\cdots$$ || $$A_{l}$$ || 
-  |||||||||||| || 
-  || $$C_{1}$$ || $$T_{1.1.}$$ || $$T_{2.1.}$$ || $$\cdots$$ || $$T_{l.1.}$$ || $$T_{..1.}$$ || 
-  || $$C_{2}$$ || $$T_{1.2.}$$ || $$T_{2.2.}$$ || $$\cdots$$ || $$T_{l.2.}$$ || $$T_{..2.}$$ || 
-  || $$\vdots$$ || $$\vdots$$ || $$\vdots$$ || || $$\vdots$$ || $$\vdots$$ || 
-  || $$C_{n}$$ || $$T_{1.n.}$$ || $$T_{2.n.}$$ || $$\cdots$$ || $$T_{l.n.}$$ || $$T_{..n.}$$ || 
-  |||||||||||| || 
-  || 합계 || $$T_{1...}$$ || $$T_{2...}$$ || $$\cdots$$ || $$T_{l...}$$ || $$T$$ || 
- 
-  $$BC$$ 2원표 
-  ||<​|2>​ [인자] $$C$$ |||||||| [인자] $$B$$ ||<​|2>​ 합계 || 
-  || $$B_{1}$$ || $$B_{2}$$ || $$\cdots$$ || $$B_{m}$$ || 
-  |||||||||||| || 
-  || $$C_{1}$$ || $$T_{.11.}$$ || $$T_{.21.}$$ || $$\cdots$$ || $$T_{.m1.}$$ || $$T_{..1.}$$ || 
-  || $$C_{2}$$ || $$T_{.12.}$$ || $$T_{.22.}$$ || $$\cdots$$ || $$T_{.m2.}$$ || $$T_{..2.}$$ || 
-  || $$\vdots$$ || $$\vdots$$ || $$\vdots$$ || || $$\vdots$$ || $$\vdots$$ || 
-  || $$C_{n}$$ || $$T_{.1n.}$$ || $$T_{.2n.}$$ || $$\cdots$$ || $$T_{.mn.}$$ || $$T_{..n.}$$ || 
-  |||||||||||| || 
-  || 합계 || $$T_{.1..}$$ || $$T_{.2..}$$ || $$\cdots$$ || $$T_{.m..}$$ || $$T$$ || 
- 
-   || $$T_{i...} = \sum_{j=1}^{m} \sum_{k=1}^{n} \sum_{p=1}^{r} y_{ijkp}$$ || $$\overline{y}_{i...} = \frac{T_{i...}}{mnr}$$ || 
-   || $$T_{.j..} = \sum_{i=1}^{l} \sum_{k=1}^{n} \sum_{p=1}^{r} y_{ijkp}$$ || $$\overline{y}_{.j..} = \frac{T_{.j..}}{lnr}$$ || 
-   || $$T_{..k.} = \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{p=1}^{r} y_{ijkp}$$ || $$\overline{y}_{..k.} = \frac{T_{..k.}}{lmr}$$ || 
-   || $$T_{ij..} = \sum_{k=1}^{n} \sum_{p=1}^{r} y_{ijkp}$$ || $$\overline{y}_{ij..} = \frac{T_{ij..}}{nr}$$ || 
-   || $$T_{i.k.} = \sum_{j=1}^{m} \sum_{p=1}^{r} y_{ijkp}$$ || $$\overline{y}_{i.k.} = \frac{T_{i.k.}}{mr}$$ || 
-   || $$T_{.jk.} = \sum_{i=1}^{l} \sum_{p=1}^{r} y_{ijkp}$$ || $$\overline{y}_{.jk.} = \frac{T_{.jk.}}{lr}$$ || 
-   || $$T_{ijk.} = \sum_{p=1}^{r} y_{ijkp}$$ || $$\overline{y}_{ijk.} = \frac{T_{ijk.}}{r}$$ || 
-   || $$T = \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \sum_{p=1}^{r} y_{ijkp}$$ || $$\overline{\overline{y}} = \frac{T}{lmnr} = \frac{T}{N}$$ || 
-   || $$N = lmnr$$ || $$CT = \frac{T^{2}}{lmnr} = \frac{T^{2}}{N}$$ || 
----- 
-===== [제곱합] ===== 
- ​개개의 데이터&​nbsp&​nbsp $$y_{ijkp}$$ 와 총편균&​nbsp&​nbsp $$\overline{\overline{y}}$$ 의 차이는 다음과 같이 8부분으로 나뉘어진다. 
- 
-  $$\begin{displaymath}\begin{split} (y_{ijkp}-\overline{\overline{y}}) &= (\overline{y}_{i...} - \overline{\overline{y}}) + (\overline{y}_{.j..} - \overline{\overline{y}}) + (\overline{y}_{..k.} - \overline{\overline{y}}) \\ &+ (\overline{y}_{ij..} - \overline{y}_{i...} - \overline{y}_{.j..} + \overline{\overline{y}}) + (\overline{y}_{i.k.} - \overline{y}_{i...} - \overline{y}_{..k.} + \overline{\overline{y}}) + (\overline{y}_{.jk.} - \overline{y}_{.j..} - \overline{y}_{..k.} + \overline{\overline{y}}) \\ &+ (y_{ijk.} - \overline{y}_{ij..} - \overline{y}_{i.k.} - \overline{y}_{.jk.} + \overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - \overline{\overline{y}}) \\ &+ (y_{ijkp}-\overline{y}_{ijk.}) \end{split}\end{displaymath}$$ 
- 
- ​양변을 제곱한 후에 모든&​nbsp&​nbsp $$i, \ j, \ k, \ p$$ 에 대하여 합하면 아래의 등식을 얻을 수 있다. 
- 
-  $$\begin{displaymath}\begin{split} \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i...} - \overline{\overline{y}})^{2} + \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.j..} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{..k.} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..} - \overline{y}_{i...} - \overline{y}_{.j..} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.} - \overline{y}_{i...} - \overline{y}_{..k.} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.} - \overline{y}_{.j..} - \overline{y}_{..k.} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.} - \overline{y}_{ij..} - \overline{y}_{i.k.} - \overline{y}_{.jk.} + \overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{y}_{ijk.})^{2} \end{split}\end{displaymath}$$ 
- 
- 위 식에서 왼쪽 항은 총변동 $$S_{T}$$ 이고, 오른쪽 항은 차례대로&​nbsp&​nbsp $$A$$ 의 [변동],&​nbsp&​nbsp $$B$$ 의 [변동],&​nbsp&​nbsp $$C$$ 의 [변동],&​nbsp&​nbsp $$A, \ B$$ 의 [교호작용]의 변동,&​nbsp&​nbsp $$A, \ C$$ 의 [교호작용]의 변동,&​nbsp&​nbsp $$B, \ C$$ 의 [교호작용]의 변동,&​nbsp&​nbsp $$A, \ B, \ C$$ 의 [교호작용]의 변동, [오차변동]인&​nbsp&​nbsp $$S_{A}$$ , $$S_{B}$$ , $$S_{C}$$ , $$S_{A \times B}$$ , $$S_{A \times C}$$ , $$S_{B \times C}$$ , $$S_{A \times B \times C}$$ , $$S_{E}$$ 가 된다. 
- 
- 
-  $$\begin{displaymath}\begin{split} S_{T} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}y_{ijkp}^{ \ 2} - CT \end{split}\end{displaymath}$$ 
- 
-  $$\begin{displaymath}\begin{split} S_{A} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{i...}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\frac{T_{i...}^{ \ 2}}{mnr}-CT \end{split}\end{displaymath}$$ 
- 
-  $$\begin{displaymath}\begin{split} S_{B} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{.j..}-\overline{\overline{y}})^{2} \\ &= \sum_{j=1}^{m}\frac{T_{.j..}^{ \ 2}}{lnr}-CT \end{split}\end{displaymath}$$ 
- 
-  $$\begin{displaymath}\begin{split} S_{C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{..k.}-\overline{\overline{y}})^{2} \\ &= \sum_{k=1}^{n}\frac{T_{..k.}^{ \ 2}}{lmr}-CT \end{split}\end{displaymath}$$ 
- 
-  $$\begin{displaymath}\begin{split} S_{A \times B} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..}-\overline{y}_{i...}-\overline{y}_{.j..}+\overline{\overline{y}})^{2} \\ &= S_{AB} - S_{A} - S_{B} \end{split}\end{displaymath}$$ 
- 
-  $$\begin{displaymath}\begin{split} S_{AB} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m} \frac{T_{ij..}^{ \ 2}}{nr} -CT \end{split}\end{displaymath}$$ 
- 
-  $$\begin{displaymath}\begin{split} S_{A \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.}-\overline{y}_{i...}-\overline{y}_{..k.}+\overline{\overline{y}})^{2} \\ &= S_{AC} - S_{A} - S_{C} \end{split}\end{displaymath}$$ 
- 
-  $$\begin{displaymath}\begin{split} S_{AC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{k=1}^{n} \frac{T_{i.k.}^{ \ 2}}{mr} -CT \end{split}\end{displaymath}$$ 
- 
-  $$\begin{displaymath}\begin{split} S_{B \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.}-\overline{y}_{.j..}-\overline{y}_{..k.}+\overline{\overline{y}})^{2} \\ &= S_{BC} - S_{B} - S_{C} \end{split}\end{displaymath}$$ 
- 
-  $$\begin{displaymath}\begin{split} S_{BC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.}-\overline{\overline{y}})^{2} \\ &= \sum_{j=1}^{m}\sum_{k=1}^{n} \frac{T_{.jk.}^{ \ 2}}{lr} -CT \end{split}\end{displaymath}$$ 
- 
-  $$\begin{displaymath}\begin{split} S_{A \times B \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.}-\overline{y}_{ij..}-\overline{y}_{i.k.}-\overline{y}_{.jk.}+\overline{y}_{i...}+\overline{y}_{.j..}+\overline{y}_{..k.}-\overline{\overline{y}})^{2} \\ &= S_{ABC}-(S_{A}+S_{B}+S_{C}+S_{A \times B}+S_{A \times C}+S_{B \times C}) \end{split}\end{displaymath}$$ 
- 
-  $$\begin{displaymath}\begin{split} S_{ABC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\frac{T_{ijk.}^{ \ 2}}{r} -CT \end{split}\end{displaymath}$$ 
- 
-  $$\begin{displaymath}\begin{split} S_{E} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} \\ &= S_{T} - S_{ABC} \end{split}\end{displaymath}$$ 
----- 
-===== [자유도] ===== 
- ​$$\nu_{A}=l-1$$ 
- 
- ​$$\nu_{B}=m-1$$ 
- 
- ​$$\nu_{C}=n-1$$ 
- 
- ​$$\nu_{A \times B}=\nu_{A} \times \nu_{B}=(l-1)(m-1)$$ 
- 
- ​$$\nu_{A \times C}=\nu_{A} \times \nu_{C}=(l-1)(n-1)$$ 
- 
- ​$$\nu_{B \times C}=\nu_{B} \times \nu_{C}=(m-1)(n-1)$$ 
- 
- ​$$\nu_{A \times B \times C}=\nu_{A} \times \nu_{B} \times \nu_{C} =(l-1)(m-1)(n-1)$$ 
- 
- ​$$\nu_{E}=\nu_{T}-(\nu_{A}+\nu_{B}+\nu_{C}+\nu_{A \times B}+\nu_{A \times C}+\nu_{B \times C}+\nu_{A \times B \times C})=lmn(r-1)$$ 
- 
- ​$$\nu_{T}=lmnr-1=N-1$$ 
----- 
-===== [평균제곱] ===== 
- ​$$V_{A}=\frac{S_{A}}{\nu_{A}}$$ 
- 
- ​$$V_{B}=\frac{S_{B}}{\nu_{B}}$$ 
- 
- ​$$V_{C}=\frac{S_{C}}{\nu_{C}}$$ 
- 
- ​$$V_{A \times B}=\frac{S_{A \times B}}{\nu_{A \times B}}$$ 
- 
- ​$$V_{A \times C}=\frac{S_{A \times C}}{\nu_{A \times C}}$$ 
- 
- ​$$V_{B \times C}=\frac{S_{B \times C}}{\nu_{B \times C}}$$ 
- 
- ​$$V_{A \times B \times C}=\frac{S_{A \times B \times C}}{\nu_{A \times B \times C}}$$ 
- 
- ​$$V_{E}=\frac{S_{E}}{\nu_{E}}$$ 
----- 
-===== [평균제곱의 기대값] ===== 
- ​$$E(V_{A})=\sigma_{E}^{ \ 2} +mnr \sigma_{A}^{ \ 2}$$ 
- 
- ​$$E(V_{B})=\sigma_{E}^{ \ 2} +lnr \sigma_{B}^{ \ 2}$$ 
- 
- ​$$E(V_{C})=\sigma_{E}^{ \ 2} +lmr \sigma_{C}^{ \ 2}$$ 
- 
- ​$$E(V_{A \times B})=\sigma_{E}^{ \ 2} +nr \sigma_{A \times B}^{ \ 2}$$ 
- 
- ​$$E(V_{A \times C})=\sigma_{E}^{ \ 2} +mr \sigma_{A \times C}^{ \ 2}$$ 
- 
- ​$$E(V_{B \times C})=\sigma_{E}^{ \ 2} +lr \sigma_{A \times B}^{ \ 2}$$ 
- 
- ​$$E(V_{A \times B \times C})=\sigma_{E}^{ \ 2} +r \sigma_{A \times B \times C}^{ \ 2}$$ 
- 
- ​$$E(V_{E})=\sigma_{E}^{ \ 2}$$ 
----- 
-===== 분산분석표 ===== 
- || '''​[요인]'''​ || '''​[제곱합]'''​ $$SS$$ || '''​[자유도]'''​ $$DF$$ || '''​[평균제곱]'''​ $$MS$$ || $$E(MS)$$ || $$F_{0}$$ || '''​기각치'''​ || '''​[순변동]'''​ $$ S\acute{} $$ || '''​[기여율]'''​ $$\rho$$ || 
- ​|||||||||||||||||| || 
- || $$A$$ || $$S_{_{A}}$$ || $$\nu_{_{A}}=l-1$$ || $$V_{_{A}}=S_{_{A}}/​\nu_{_{A}}$$ || $$\sigma_{_{E}}^{ \ 2}+mnr \ \sigma_{_{A}}^{2}$$ || $$V_{_{A}}/​V_{_{E}}$$ || $$F_{1-\alpha}(\nu_{_{A}} \ , \ \nu_{_{E}})$$ || $$S_{_{A}}\acute{}$$ || $$S_{_{A}}\acute{}/​S_{_{T}}$$ || 
- || $$B$$ || $$S_{_{B}}$$ || $$\nu_{_{B}}=m-1$$ || $$V_{_{B}}=S_{_{B}}/​\nu_{_{B}}$$ || $$\sigma_{_{E}}^{ \ 2}+lnr \ \sigma_{_{B}}^{2}$$ || $$V_{_{B}}/​V_{_{E}}$$ || $$F_{1-\alpha}(\nu_{_{B}} \ , \ \nu_{_{E}})$$ || $$S_{_{B}}\acute{}$$ || $$S_{_{B}}\acute{}/​S_{_{T}}$$ || 
- || $$C$$ || $$S_{_{C}}$$ || $$\nu_{_{C}}=n-1$$ || $$V_{_{C}}=S_{_{C}}/​\nu_{_{C}}$$ || $$\sigma_{_{E}}^{ \ 2}+lmr \ \sigma_{_{C}}^{2}$$ || $$V_{_{C}}/​V_{_{E}}$$ || $$F_{1-\alpha}(\nu_{_{C}} \ , \ \nu_{_{E}})$$ || $$S_{_{C}}\acute{}$$ || $$S_{_{C}}\acute{}/​S_{_{T}}$$ || 
- || $$A \times B$$ || $$S_{_{A \times B}}$$ || $$\nu_{_{A \times B}}=(l-1)(m-1)$$ || $$V_{_{A \times B}}=S_{_{A \times B}}/​\nu_{_{A \times B}}$$ || $$\sigma_{_{E}}^{ \ 2}+nr \ \sigma_{_{A \times B}}^{2}$$ || $$V_{_{A \times B}}/​V_{_{E}}$$ || $$F_{1-\alpha}(\nu_{_{A \times B}} \ , \ \nu_{_{E}})$$ || $$S_{_{A \times B}}\acute{}$$ || $$S_{_{A \times B}}\acute{}/​S_{_{T}}$$ || 
- || $$A \times C$$ || $$S_{_{A \times C}}$$ || $$\nu_{_{A \times C}}=(l-1)(n-1)$$ || $$V_{_{A \times C}}=S_{_{A \times C}}/​\nu_{_{A \times C}}$$ || $$\sigma_{_{E}}^{ \ 2}+mr \ \sigma_{_{A \times C}}^{2}$$ || $$V_{_{A \times C}}/​V_{_{E}}$$ || $$F_{1-\alpha}(\nu_{_{A \times C}} \ , \ \nu_{_{E}})$$ || $$S_{_{A \times C}}\acute{}$$ || $$S_{_{A \times C}}\acute{}/​S_{_{T}}$$ || 
- || $$B \times C$$ || $$S_{_{B \times C}}$$ || $$\nu_{_{B \times C}}=(m-1)(n-1)$$ || $$V_{_{B \times C}}=S_{_{B \times C}}/​\nu_{_{B \times C}}$$ || $$\sigma_{_{E}}^{ \ 2}+lr \ \sigma_{_{B \times C}}^{2}$$ || $$V_{_{B \times C}}/​V_{_{E}}$$ || $$F_{1-\alpha}(\nu_{_{B \times C}} \ , \ \nu_{_{E}})$$ || $$S_{_{B \times C}}\acute{}$$ || $$S_{_{B \times C}}\acute{}/​S_{_{T}}$$ || 
- || $$A \times B \times C$$ || $$S_{_{A \times B \times C}}$$ || $$\nu_{_{A \times B \times C}}=(l-1)(m-1)(n-1)$$ || $$V_{_{A \times B \times C}}=S_{_{A \times B \times C}}/​\nu_{_{A \times B \times C}}$$ || $$\sigma_{_{E}}^{ \ 2}+r \ \sigma_{_{A \times B \times C}}^{ \ 2}$$ || $$V_{_{A \times B \times C}}/​V_{_{E}}$$ || $$F_{1-\alpha}(\nu_{_{A \times B \times C}} \ , \ \nu_{_{E}})$$ || $$S_{_{A \times B \times C}}\acute{}$$ || $$S_{_{A \times B \times C}}\acute{}/​S_{_{T}}$$ || 
- || $$E$$ || $$S_{_{E}}$$ || $$\nu_{_{E}}=lmn(r-1)$$ || $$V_{_{E}}=S_{_{E}}/​\nu_{_{E}}$$ || $$\sigma_{_{E}}^{ \ 2}$$ ||  ||  || $$S_{_{E}}\acute{}$$ || $$S_{_{E}}\acute{}/​S_{_{T}}$$ || 
- ​|||||||||||||||||| || 
- || $$T$$ || $$S_{_{T}}$$ || $$\nu_{_{T}}=lmnr-1$$ ||  ||  ||  ||  || $$S_{_{T}}$$ || $$1$$ || 
----- 
-===== [분산분석] ===== 
- ​인자&​nbsp&​nbsp $$A$$ 에 대한 [분산분석] 
- 
-  $$F_{0}=\frac{V_{_{A}}}{V_{_{E}}}$$ 
- 
-  [기각역] :&​nbsp&​nbsp $$F_{0} > F_{1-\alpha}(\nu_{_{A}},​\nu_{_{E}})$$ 
----- 
- ​인자&​nbsp&​nbsp $$B$$ 에 대한 [분산분석] 
- 
-  $$F_{0}=\frac{V_{_{B}}}{V_{_{E}}}$$ 
- 
-  [기각역] :&​nbsp&​nbsp $$F_{0} > F_{1-\alpha}(\nu_{_{B}},​\nu_{_{E}})$$ 
----- 
- ​인자&​nbsp&​nbsp $$C$$ 에 대한 [분산분석] 
- 
-  $$F_{0}=\frac{V_{_{C}}}{V_{_{E}}}$$ 
- 
-  [기각역] :&​nbsp&​nbsp $$F_{0} > F_{1-\alpha}(\nu_{_{C}},​\nu_{_{E}})$$ 
----- 
- ​인자&​nbsp&​nbsp $$A , \ B$$ 의 [교호작용] 대한 [분산분석] 
- 
-  $$F_{0}=\frac{V_{_{A \times B}}}{V_{E}}$$ 
- 
-  [기각역] :&​nbsp&​nbsp $$F_{0} > F_{1-\alpha}(\nu_{_{A \times B}},​\nu_{_{E}})$$ 
----- 
- ​인자&​nbsp&​nbsp $$A , \ C$$ 의 [교호작용] 대한 [분산분석] 
- 
-  $$F_{0}=\frac{V_{_{A \times C}}}{V_{E}}$$ 
- 
-  [기각역] :&​nbsp&​nbsp $$F_{0} > F_{1-\alpha}(\nu_{_{A \times C}},​\nu_{_{E}})$$ 
----- 
- ​인자&​nbsp&​nbsp $$B , \ C$$ 의 [교호작용] 대한 [분산분석] 
- 
-  $$F_{0}=\frac{V_{B \times C}}{V_{E}}$$ 
- 
-  [기각역] :&​nbsp&​nbsp $$F_{0} > F_{1-\alpha}(\nu_{_{B \times C}},​\nu_{_{E}})$$ 
----- 
- ​인자&​nbsp&​nbsp $$A , \ B , \ C$$ 의 [교호작용] 대한 [분산분석] 
- 
-  $$F_{0}=\frac{V_{A \times B \times C}}{V_{E}}}$$ 
- 
-  [기각역] :&​nbsp&​nbsp $$F_{0} > F_{1-\alpha}(\nu_{A \times B \times C},​\nu_{_{E}})$$ 
----- 
-===== 각 [수준]의 [모평균]의 [추정] (주효과만이 유의한 경우) ===== 
- ​주효과인 인자&​nbsp $$A, B, C$$ 만이 유의한 경우 [교호작용]들이 모두 오차항에 [풀링]되어 버린다. 
- 
- ​(단,&​nbsp&​nbsp $$S_{E}\acute{}=S_{E}+S_{A \times B}+S_{A \times C}+S_{B \times C}+S_{A \times B \times C}, \ \nu_{E}\acute{}=\nu_{E}+\nu_{A \times B}+\nu_{A \times C}+\nu_{B \times C}+\nu_{A \times B \times C}, \ V_{E}\acute{}=S_{E}\acute{}/​\nu_{E}\acute{}$$ 이다.) 
- 
- 
- * '''​[인자]&​nbsp&​nbsp $$A$$ 의 [모평균]에 관한 [추정]'''​ 
- 
-  $$i$$ [수준]에서의 [모평균]&​nbsp&​nbsp $$\mu(A_{i})$$ 의 [점추정]값 
- 
-   ​$$\hat{\mu}(A_{i})=\widehat{\mu + a_{i}} = \overline{y}_{i...}$$ 
- 
- 
-  $$i$$ [수준]에서의 [모평균]&​nbsp&​nbsp $$\mu(A_{i})$$ 의&​nbsp&​nbsp $$100(1-\alpha) \% $$ [신뢰구간]은 아래와 같다. 
- 
-   ​$$\hat{\mu}(A_{i})= \left( \overline{y}_{i...} - t_{\alpha/​2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{mnr}} \ , \ \overline{y}_{i...} + t_{\alpha/​2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{mnr}} \right)$$ 
----- 
- * '''​[인자]&​nbsp&​nbsp $$B$$ 의 [모평균]에 관한 [추정]'''​ 
- 
-  $$j$$ [수준]에서의 [모평균]&​nbsp&​nbsp $$\mu(B_{j})$$ 의 [점추정]값 
- 
-   ​$$\hat{\mu}(B_{j})=\widehat{\mu + b_{j}} = \overline{y}_{.j..}$$ 
- 
- 
-  $$j$$ [수준]에서의 [모평균]&​nbsp&​nbsp $$\mu(B_{j})$$ 의&​nbsp&​nbsp $$100(1-\alpha) \% $$ [신뢰구간]은 아래와 같다. 
- 
-   ​$$\hat{\mu}(B_{j})= \left( \overline{y}_{.j..} - t_{\alpha/​2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{lnr}} \ , \ \overline{y}_{.j..} + t_{\alpha/​2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{lnr}} \right)$$ 
----- 
- * '''​[인자]&​nbsp&​nbsp $$C$$ 의 [모평균]에 관한 [추정]'''​ 
- 
-  $$k$$ [수준]에서의 [모평균]&​nbsp&​nbsp $$\mu(C_{k})$$ 의 [점추정]값 
- 
-   ​$$\hat{\mu}(C_{k})=\widehat{\mu + c_{k}} = \overline{y}_{..k.}$$ 
- 
- 
-  $$k$$ [수준]에서의 [모평균]&​nbsp&​nbsp $$\mu(C_{k})$$ 의&​nbsp&​nbsp $$100(1-\alpha) \% $$ [신뢰구간]은 아래와 같다. 
- 
-   ​$$\hat{\mu}(C_{k})= \left( \overline{y}_{..k.} - t_{\alpha/​2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{lmr}} \ , \ \overline{y}_{..k.} + t_{\alpha/​2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{lmr}} \right)$$ 
----- 
- * '''​[인자]&​nbsp&​nbsp $$A$$ 와&​nbsp&​nbsp $$B$$ &​nbsp&​nbsp그리고&​nbsp&​nbsp $$C$$ 의 [모평균]에 관한 [추정]'''​ 
- 
-  $$A$$ [인자]의&​nbsp&​nbsp $$i$$ [수준]과&​nbsp&​nbsp $$B$$ [인자]의&​nbsp&​nbsp $$j$$ [수준],&​nbsp&​nbsp $$C$$ [인자]의&​nbsp&​nbsp $$k$$ [수준]에서의 [모평균]&​nbsp&​nbsp $$\mu(A_{i}B_{j}C_{k})$$ 의 [점추정]값 
- 
-   ​$$\hat{\mu}(A_{i}B_{j}C_{k})=\widehat{\mu+a_{i}+b_{j}+c_{k}}=\overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - 2 \overline{\overline{y}}$$ 
- 
- 
-  $$A$$ [인자]의&​nbsp&​nbsp $$i$$ [수준]과&​nbsp&​nbsp $$B$$ [인자]의&​nbsp&​nbsp $$j$$ [수준],&​nbsp&​nbsp $$C$$ [인자]의&​nbsp&​nbsp $$k$$ [수준]에서의 [모평균]&​nbsp&​nbsp $$\mu(A_{i}B_{j}C_{k})$$ 의&​nbsp&​nbsp $$100(1-\alpha) \% $$ [신뢰구간]은 아래와 같다. 
- 
-   ​$$\hat{\mu}(A_{i}B_{j}C_{k})= \left( (\overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - 2\overline{\overline{y}}) - t_{\alpha/​2}(\nu_{E}\acute{} \ )\sqrt{\frac{V_{E}\acute{}}{n_{e}}} \ , \ (\overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - 2\overline{\overline{y}}) - t_{\alpha/​2}(\nu_{E}\acute{} \ )\sqrt{\frac{V_{E}\acute{}}{n_{e}}} \right)$$ 
- 
-   ​단,&​nbsp&​nbsp $$n_{e}$$ 는 [유효반복수]이고&​nbsp&​nbsp $$n_{e} = \frac{lmnr}{l+m+n-2}$$ 이다. 
- 
----- 
-  * [[실험계획법]] 
-  * [[삼원배치법]]